Biomedical Engineering Reference
In-Depth Information
[7] breitz Hb, Weiden pL, beaumier pL, Axworthy Db, Seiler C, Su f-m, graves S,
bryan K, Reno Jm. Clinical optimization of pretargeted radioimmunotherapy with
antibody-streptavidin conjugate and 90Y-DOTA-biotin. J Nucl med 2000; 41 :
131-140.
[8] Knox SJ, goris mL, Tempero m, Weiden pL, gentner L, breitz H, Adams gp, Axworthy
D, gaffigan S, bryan K, fisher DR, Colcher D, Horak ID, Weiner Lm. phase II trial of
yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with
metastatic colon cancer. Clin Cancer Res 2000; 6 :406-414.
[9] pagel Jm, Hedin N, Subbiah K, meyer D, mallet R, Axworthy D, Theodore LJ,
Wilbur DS, matthews DC, press OW. Comparison of anti-CD20 and anti-CD45 anti-
bodies for conventional and pretargeted radioimmunotherapy of b-cell lymphomas.
blood 2003; 101 :2340-2348.
[10] Corneillie Tm, Whetstone pA, Lee KC, Wong Jp, meares Cf. Converting weak binders
into infinite binders. bioconjug Chem 2004; 15 :1389-1391.
[11] goodwin DA, meares Cf. pretargeting: general principles. Cancer 1997; 80 :2675-2680.
[12] Wei LH, Olafsen T, Radu C, Hildebrandt IJ, mcCoy mR, phelps me, meares C, Wu Am,
Czernin J, Weber WA. engineered antibody fragments with infinite affinity as reporter
genes for peT imaging. J Nucl med 2008; 49 :1828-1835.
[13] Loudos g, Kagadis gC, psimadas D. Current status and future perspectives of in vivo
small animal imaging using radiolabeled nanoparticles. eur J Radiol 2011; 78 :
287-295.
[14] gunasekera U, pankhurst Q, Douek m. Imaging applications of nanotechnology in cancer.
Target Oncol 2009; 4 :169-181.
[15] Heidel J, Davis m. Clinical developments in nanotechnology for cancer therapy. pharm
Res 2011; 28 :187-199.
[16] Hamoudeh m, Kamleh mA, Diab R, fessi H. Radionuclides delivery systems for nuclear
imaging and radiotherapy of cancer. Adv Drug Deliv Rev 2008; 60 :1329-1346.
[17] Sanvicens N, marco mp. multifunctional nanoparticles - properties and prospects for
their use in human medicine. Trends biotechnol 2008; 26 :425-433.
[18] Chen K, Li Z-b, Wang H, Cai W, Chen X. Dual-modality optical and positron emission
tomography imaging of vascular endothelial growth factor receptor on tumor vasculature
using quantum dots. eur J Nucl med mol Imaging 2008; 35 :2235-2244.
[19] Devaraj NK, Keliher eJ, Thurber gm, Nahrendorf m, Weissleder R. 18f Labeled
nanoparticles for in vivo peT-CT imaging. bioconjug Chem 2009; 20 :397-401.
[20] mcDevitt mR, Chattopadhyay D, Kappel bJ, Jaggi JS, Schiffman SR, Antczak C,
Njardarson JT, brentjens R, Scheinberg DA. Tumor targeting with antibody-functionalized,
radiolabeled carbon nanotubes. J Nucl med 2007; 48 :1180-1189.
[21] Choi CHJ, Alabi CA, Webster p, Davis me. mechanism of active targeting in solid tumors with
transferrin-containing gold nanoparticles. proc Natl Acad Sci U S A 2010; 107 :1235-1240.
[22] Huang X, peng X, Wang Y, Wang Y, Shin Dm, el-Sayed mA, Nie S. A reexamination of
active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently
conjugated peptide ligands. ACS Nano 2010; 4 :5887-5896.
[23] Almutairi A, Rossin R, Shokeen m, Hagooly A, Ananth A, Capoccia b, guillaudeu S,
Abendschein D, Anderson CJ, Welch mJ, fréchet JmJ. biodegradable dendritic positron-
emitting nanoprobes for the noninvasive imaging of angiogenesis. proc Natl Acad Sci U
S A 2009; 106 :685-690.
Search WWH ::




Custom Search