Biomedical Engineering Reference
In-Depth Information
[81] apperson K, Karolin J, Martin RW, Birch DJS. Nanoparticle metrology standards based
on the time-resolved fluorescence anisotropy of silica colloids. Meas Sci Technol
2009; 20 :025310.
[82] Kumar R, Roy I, ohulchanskyy TY, goswami lN, Bonoiu aC, Bergey EJ, Tramposch
KM, Maitra a, Prasad PN. Covalently dye-linked, surface-controlled, and bioconjugated
organically modified silica nanoparticles as targeted probes for optical imaging. aCS
Nano 2008; 2 :449-456.
[83] gustafson TP, Cao Q, achilefu S, Berezin MY. Defining a polymethine dye for fluores-
cence anisotropy applications in the near-infrared spectral range. Chemphyschem 2012;
13 :716-723.
[84] Jameson DM, Ross Ja. fluorescence polarization/anisotropy in diagnostics and imaging.
Chem Rev 2010; 110 :2685-2708.
[85] lakowicz JR. Principles of Fluorescence Spectroscopy . 3rd ed. New York: Springer; 2006.
[86] Perrin f. The fluorescence of solutions: molecular induction, polarization and duration of
emission and photochemistry. ann Phys 1929; 12 :169-275.
[87] Sahoo Y, goodarzi a, Swihart MT, ohulchanskyy TY, Kaur N, furlani EP, Prasad PN.
aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetopho-
retic control. J Phys Chem B 2005; 109 :3879-3885.
[88] Bothun gD. Hydrophobic silver nanoparticles trapped in lipid bilayers: size distribution,
bilayer phase behavior, and optical properties. J Nanobiotechnol 2008; 6 :13.
[89] Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, Tang Z, Wu Y, Zhu Z, Tan W. Carbon
nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridiza-
tion. J am Chem Soc 2008; 130 :8351-8358.
[90] grecco HE, lidke Ka, Heintzmann R, lidke DS, Spagnuolo C, Martinez oE, Jares-
Erijman Ea, Jovin TM. Ensemble and single particle photophysical properties (two-
photon excitation, anisotropy, fRET, lifetime, spectral conversion) of commercial
quantum dots in solution and in live cells. Microsc Res Technol 2004; 65 :169-179.
[91] Elson El. fluorescence correlation spectroscopy and photobleaching recovery. annu
Rev Phys Chem 1985; 36 :379-406.
[92] Rocker C, Potzl M, Zhang f, Parak WJ, Nienhaus gU. a quantitative fluorescence study
of protein monolayer formation on colloidal nanoparticles. Nat Nanotechnol
2009; 4 :577-580.
[93] Dong C, Huang X, Ren J. Characterization of water-soluble luminescent quantum dots
by fluorescence correlation spectroscopy. ann N Y acad Sci 2008; 1130 :253-261.
[94] Benezra M, Penate-Medina o, Zanzonico PB, Schaer D, ow H, Burns a, DeStanchina
E, longo V, Herz E, Iyer S, Wolchok J, larson SM, Wiesner U, Bradbury MS. Multimodal
silica nanoparticles are effective cancer-targeted probes in a model of human melanoma.
J Clin Invest 2011; 121 :2768-2780.
[95] Zhang P, li l, Dong C, Qian H, Ren J. Sizes of water-soluble luminescent quantum dots
measured by fluorescence correlation spectroscopy. anal Chim acta 2005; 546 :
46-51.
[96] Balaji PS, Murthy aVR, Tiwari N, Kulkarni S. fluorescence correlation spectroscopy of
gold nanoparticles. Spectrosc lett 2012; 45 :22-28.
[97] Sharma S, Pal N, Chowdhury PK, Sen S, ganguli aK. Understanding growth kinetics
of nanorods in microemulsion: a combined fluorescence correlation spectroscopy,
Search WWH ::




Custom Search