Biomedical Engineering Reference
In-Depth Information
[47] Berezin MY, akers WJ, guo K, fischer gM, Daltrozzo E, Zumbusch a, achilefu S.
long fluorescence lifetime molecular probes based on near infrared pyrrolopyrrole cya-
nine fluorophores for in vivo imaging. Biophys J 2009; 97 :l22-l24.
[48] Udovich Ja, Kirkpatrick ND, Kano a, Tanbakuchi a, Utzinger U, gmitro af. Spectral
background and transmission characteristics of fiber optic imaging bundles. appl opt
2008; 47 :4560-4568.
[49] Plotnichenko Vg, Sokolov Vo, Dianov EM. Hydroxyl groups in high-purity silica glass.
J Non-Cryst Solids 2000; 261 :186-194.
[50] laux E-M, Behnke T, Hoffmann K, Resch-genger U. Keeping particles brilliant - simple
methods for the determination of the dye content of fluorophore-loaded polymeric parti-
cles. anal Meth 2012; 4 :1759-1768.
[51] Sun g, Berezin MY, fan J, lee H, Ma J, Zhang K, Wooley Kl, achilefu S. Bright
fluorescent nanoparticles for developing potential optical imaging contrast agents.
Nanoscale 2010; 2 :548-558.
[52] Chou lYT, Chan WCW. fluorescence-tagged gold nanoparticles for rapidly character-
izing the size-dependent biodistribution in tumor models. adv Healthcare Mater 2012; 1 :
714-721.
[53] gustafson TP, Cao Q, Wang ST, Berezin MY. Design of irreversible optical nanother-
mometers for thermal ablations. Chem Commun (Camb) 2013; 49 :680-682.
[54] Cohen S, Margel S. Engineering of near IR fluorescent albumin nanoparticles for in vivo
detection of colon cancer. J Nanobiotechnol 2012; 10 :36.
[55] galande aK, Hilderbrand Sa, Weissleder R, Tung C-H. Enzyme-targeted fluorescent
imaging probes on a multiple antigenic peptide core. J Med Chem 2006; 49 :4715-4720.
[56] fleige E, Ziem B, grabolle M, Haag R, Resch-genger U. aggregation phenomena of
host and guest upon the loading of dendritic core-multishell nanoparticles with solvato-
chromic dyes. Macromolecules 2012; 45 :9452-9459.
[57] Zhou Jf, Chin MP, Schafer Sa. Aggregation and Degradation of Indocyanine Green .
Bellingham, Ca: SPIE; 1994. p 495-505.
[58] Emerson ES, Conlin Ma, Rosenoff aE, Norland KS, Rodriguez H, Chin D, Bird gR.
The geometrical structure and absorption spectrum of a cyanine dye aggregate. J Phys
Chem 1967; 71 :2396-2403.
[59] Williams aTR, Winfield Sa, Miller JN. Relative fluorescence quantum yields using a
computer-controlled luminescence spectrometer. analyst 1983; 108 :1067-1071.
[60] fery-forgues S, lavabre D. are fluorescence quantum yields so tricky to measure? a
demonstration using familiar stationery products. J Chem Educ 1999; 76 :1260-1264.
[61] Rurack K, Spieles M. fluorescence quantum yields of a series of red and near-infrared
dyes emitting at 600−1000 nm. anal Meth 2011; 83 :1232-1242.
[62] Crosby ga, Demas JN. Measurement of photoluminescence quantum yields. Review.
J Phys Chem 1971; 75 :991-1024.
[63] Semonin oE, Johnson JC, luther JM, Midgett ag, Nozik aJ, Beard MC. absolute pho-
toluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J Phys Chem
lett 2010; 1 :2445-2450.
[64] Würth C, Pauli J, lochmann C, Spieles M, Resch-genger U. Integrating sphere setup for
the traceable measurement of absolute photoluminescence quantum yields in the near
infrared. anal Meth 2011; 84 :1345-1352.
[65] Suzuki K, Kobayashi a, Kaneko S, Takehira K, Yoshihara T, Ishida H, Shiina Y, oishi S,
Tobita S. Reevaluation of absolute luminescence quantum yields of standard solutions
Search WWH ::




Custom Search