Chemistry Reference
In-Depth Information
relax into a self-trapped state. This is in contrast to the relaxation process for the CT
exciton state (M 3+ ,M 3+
M 4+ ,M 2+ ) in Peierls-distorted Pd and Pt MX chains. Pt and
Pd MX chains show large Stokes shifts due to the strong electron-lattice interaction
because bridging halide ions X are quite sensitive to the charge of M ions. On the
other hand, in the case of [Ni(chxn) 2 Br]Br 2 , because the bridging bromine, which is
neutral (Br 0 ) when the LMCT occurs, is insensitive to the charge of the Ni ions, it
showed almost no Stokes shift, indicating that the electron-lattice interaction ( S )ofthis
system is small or suppressed. More detailed studies have been recently made on the
time dependence of the photoluminescence [ 22 ] as well as theoretical research [ 23 , 24 ].
The peaks at 1.3 and 1.4 eV gradually disappeared with an increase in the
temperature. This shows that the deactivation process changes from luminescence
to thermal relaxation. The peak at 1.3 eV slightly shifted to a lower energy with an
increase in the temperature. We attributed the shift to an increase in the Ni-Br
distance with an increase in the temperature, resulting in a decrease in the separa-
tion of Br 4 p z and Ni 3+ 3d z 2 orbitals.
!
References
1. Toriumi K, Wada Y, Mitani T, Bandow S, Yamashita M, Fujii Y (1989) J Am Chem Soc
111:2341
2. Kishida H, Matsuzaki H, Okamoro H, Manabe T, Yamashita M, Taguchi Y, Tokura Y (2000)
Nature 405:929
3. Takaishi S, Tobu Y, Kitagawa H, Goto A, Shimizu T, Okubo T, Mitani T, Ikeda R (2004) J Am
Chem Soc 126:1614
4. Hazell A (1991) Acta Cryst C 47:962
5. Bonner JC, Fisher ME (1964) Phys Rev 135:A640
6. Eggert S, Affleck I, Takahashi M (1994) Phys Rev Lett 73:332
7. Dehmelt HG, Kruger H (1951) Z Physik 129:401
8. Smith PW, Stoessiger R (1971) J Chem Soc D 7:279
9. Nuclear Quadrupole Resonance Spectra Data Base, Japan Association for International Chem-
ical Information, Apr 2003
10. Bayer H (1951) Z Physik 130:227
11. Kushida T, Benedek GB, Bloembergen N (1956) Phys Rev 104:1364
12. Townes CH, Dailey BP (1949) J Chem Phys 17:782
13. Dailey BP, Townes CH (1955) J Chem Phys 23:118
14. King JG, Jaccarino V (1954) Phys Rev 94:1610
15. Ito K, Nakamura D, Kurita Y, Ito K, Kubo M (1961) J Am Chem Soc 83:4526
16. Nakamura D, Kurita Y, Ito K, Kubo M (1960) J Am Chem Soc 82:5783
17. Ikeda R, Nakamura D, Kubo M (1965) J Phys Chem 69:2101
18. Okamoto H, Toriumi K, Mitani T, Yamashita M (1990) Phys Rev B 42:10381
19. Okamoto H, Shimada Y, Oka Y, Chainani A, Takahashi T, Kitagawa H, Mitani T, Toriumi K,
Inoue K, Manabe T, Yamashita M (1996) Phys Rev B 54:8438
20. Tanino H, Kobayashi K (1983) J Phys Soc Jpn 52:1446
21. Takaishi S, Kitagawa H, Ikeda R (2002) Mol Cryst Liq Cryst 379:279
22. Takahashi Y, Suemoto T (2004) Phys Rev B 70:081101
23. Iwano K, Ono M, Okamoto H (2002) Phys Rev B 66:235103
24. Iwano K (2006) Phys Rev B 73:035108
Search WWH ::




Custom Search