Chemistry Reference
In-Depth Information
Table 2.1 The M-M distance L , the M-X distance l 1 and l 2 ( l 1
< l 2 ), the bridging halogen
displacement
/ L ), the CT-exciton energy E CT , and
the photoluminescence energy E lm for various MX-chain compounds
d
(
¼
( l 2
l 1 )/2), the distortion parameter d (
¼
2
d
E CT
(eV)
E Im
(eV)
L ( ˚ )
I 1 ( ˚ )
I 2 ( ˚ )
( ˚ )
d
d
1.
[Pt(chxn) 2 ][Pt(chxn) 2 Cl 2 ](ClO 4 ) 4 5.730
2.314
3.416
0.511
0.190
3.20
1.49
2.
[Pt(en) 2 ][Pt(en) 2 Cl 2 ](ClO 4 ) 4
5.403
2.318
3.095
0.3885 0.144
2.73
1.17
3.
[Pt(chxn) 2 ][Pt(chxn) 2 Cl 2 ]Cl 4
5.158
2.324
2.834
0.255
0.099
1.99
0.90
4.
[Pt(en) 2 ][Pt(en) 2 Br 2 ](ClO 4 ) 4 -I
5.493
2.487
3.006
0.2595 0.094
1.98
0.78
5.
[Pt(en) 2 ][Pt(en) 2 Br 2 ](ClO 4 ) 4 -II
5.695
2.487
3.208
0.3605 0.1266 2.40
1.11
6.
[Pt(chxn) 2 ][Pt(chxn) 2 Br 2 ]Br 4
5.372
2.490
2.882
0.196
0.073
1.40
0.68
7.
[Pt(en) 2 ][Pt(en) 2 I 2 ](ClO 4 ) 4
5.820
2.726
3.093
0.1835 0.063
1.38
0.60
8.
[Pt(chxn) 2 ][Pt(chxn) 2 I 2 ]I 4
5.673
2.708
2.965
0.2564 0.0453 0.94
-
9.
[Pd(en) 2 ][Pt(en) 2 Cl 2 ](ClO 4 ) 4
5.357
2.324
3.003
0.3545 0.130
2.05
0.86
10.
[Pd(en) 2 ][Pd(en) 2 Br 2 ](ClO 4 ) 4
5.407
2.911
2.496
0.2075 0.075
1.13
0.40
11.
[Pd(chxn) 2 ][Pd(chxn) 2 Br 2 ]Br 4
5.296
2.523
2.773
0.125
0.047
0.75
-
12.
[Pd(en) 2 ][Pt(en) 2 Cl 2 ](ClO 4 ) 4
5.415
2.315
3.100
0.3925 0.145
3.22
1.65
13.
[Pd(en) 2 ][Pt(en) 2 Br 2 ](ClO 4 ) 4
5.502
2.467
3.035
0.284
0.103
2.59
1.54
14.
[Pd(en) 2 ][Pt(en) 2 I 2 ](ClO 4 ) 4
5.866
2.678
3.188
0.255
0.087
2.28
1.12
15.
[Ni(chxn) 2 Cl 2 ]Cl 2
4.894
2.447
0
0
1.83
-
16.
[Ni(chxn) 2 Br 2 ]Br 2
5.160
2.580
0
0
1.28
-
Parameter values are taken from [ 5 ] and references therein
Typical MX-chain compounds have ClO 4 for the counteranion (Y). The data of
those compounds are shown by open marks in Fig. 2.3 . The data of the compounds
with halogen ions for Y are plotted by solid marks in the same figure. By changing
the counteranion from ClO 4 to halogen ions, the H-bonds between the amino
groups of the ligands and the counteranions are strengthened. As a result, the M-M
distance L is considerably decreased. Such a feature was ascertained by the infrared
(IR) and X-ray measurements [ 28 , 32 , 56 ]. As shown in Fig. 2.3 , the lengths L in the
compounds with Y
¼
halogen (solid marks) are relatively smaller than those of the
compounds with Y ¼ ClO 4 (open marks).
The position of the bridging halogen (X) ion between the neighboring two M
ions, or the M-X distance l 1 and l 2 , depends strongly on the choice of X. As seen in
Fig. 2.3 , the shorter M-X distance l 1 is almost constant in Pt or Pd compounds
having the same X ions, even when L is considerably changed. The constant values
of l 1 (
2.33 ˚ for X
2.50 ˚ for X
2.73 ˚ for X
I) are
close to the sum of the ionic radii of the bridging halogen ions (Cl : 1.81 ˚ ,Br :
1.96 ˚ and I : 2.16 ˚ [ 57 , 58 ]) and the metal (Pd 4 þ : 0.62 ˚ and Pt 4 þ : 0.63 ˚ [ 59 ]).
Starting from the M 3 þ -X regular chain structure, the deviation of l 1 from the
dotted line ( L /2) corresponds to the amplitude of the halogen displacements
¼
Cl and
¼
Br, 2.68
¼
.
Therefore, the decrease of L induces the decrease of the longer M-X distance l 2 , and
then induces the decrease of
d
. Thus, we can consider that the decrease of L
suppresses effectively the e-l interaction. At the same time, the decrease of L
leads to the increase of transfer energy ( t ) between the neighboring M ions, making
the electronic state more delocalized and also decreasing
d
d
, that is, the CDW
Search WWH ::




Custom Search