Biomedical Engineering Reference
In-Depth Information
determination of molecular concentration profiles. Journal of Investigative
Dermatology 116(3), 434-442.
96. Ly, E., Piot, O., Wolthuis, R., et al. 2008. Combination of FTIR spectral imag-
ing and chemometrics for tumour detection from paraffin-embedded biopsies.
Analyst 133(2), 197-205.
97. Lieber, C. A., Majumder, S. K., Billheimer D., et al. 2008. Raman microspec-
troscopy for skin cancer detection in vitro. Journal of Biomedical Optics 13(2),
024013.
98. Hammody, Z., Argov, S., Sahu, R. K., Cagnano E., Moreh R., and Mordechai
S. 2008. Distinction of malignant melanoma and epidermis using IR micro-
spectroscopy and statistical methods. Analyst 133(3), 372-378.
99. Fujioka, N., Morimoto, Y., Arai, T., and Kikuchi, M. 2004. Discrimination
between normal and malignant human gastric tissues by Fourier transform
infrared spectroscopy. Cancer Detection & Prevention 28, 32-36.
100. Tan, Y.-Y., Shen, A.-G., Zhang, J.-W., Wu, N., Feng, L., Wu, Q.-F., Ye, Y., and
Hu, J.-M. 2003. Design of auto-classifying system and its application in Raman
spectroscopy diagnosis of gastric carcinoma. 2 nd International Conference
Machine Learning & Cybernetics. November 2-5.
101. Weng, S.-F., Ling, X.-F., Song, Y.-Y., et al. 2000. FT-IR fibre optics and FT-Raman
spectroscopic studies for the diagnosis of cancer. American Clinical Laboratory
19(7), 20.
102. Mordechai, S., Salman, A., Argov, S., et al. 2000. Fourier-transform infra-
red  spectroscopy of human cancerous and normal intestine. Proc. SPIE 3918,
66-77.
103. Shetty, G., Kedall, C., Shepherd, N., Stone, N., and Barr, H. 2006. Raman spec-
troscopy: Evaluation of biochemical changes in carcinogenesis of oesophagus.
British Journal of Cancer 94, 1460-1464.
104. Li, Q.-B., Sun, X.-J., Xu, Y.-Z., et al. 2005. Diagnosis of gastric inflammation and
malignancy in endoscopic biopsies based on Fourier transform infrared spec-
troscopy. Clinical Chemistry 51(2), 346-350.
105. Xu, Y. Z., Yang, L. M., Xu, Z., et al. 2005. Distinguishing malignant from normal
stomach tissues and its in vivo, in situ measurement in operating process
using FTIR Fibre-Optic techniques. Science in China Series B-Chemistry 48(2),
167-175.
106. Suzuki, T., Hattori, Y., Katagiri, T., et al. 2008. In situ Raman study of the instant
spectral changes observed in a pancreatic tumour tissue in living and dead
model mice. Biomedical Optical Spectroscopy 6853, 85314.
107. Kawabata, T., Mizuno, T., Okazaki, S., et al. 2008. Optical diagnosis of gastric
cancer using near-infrared multichannel Raman spectroscopy with a 1064-nm
excitation wavelength. Journal of Gastroenterology 43(4), 283-290.
108. The, S. K., Zheng, W., Ho, K. Y., et al. 2008. Diagnostic potential of near-infrared
Raman spectroscopy in the stomach: Differentiating dysplasia from normal tis-
sue. British Journal of Cancer 98(2), 457-465.
109. Pandya, A. K., Serhatkulu, G. K., Cao, A., et al. 2008. Evaluation of pancreatic
cancer with Raman spectroscopy in a mouse model. Pancreas 36(2), E1-E8.
110. Hu, Y. G., Shen, A. G., Jiang, T., et al. 2008. Classification of normal and malig-
nant human gastric mucosa tissue with confocal Raman microspectroscopy
and wavelet analysis. Spectrochemica Acta Part A—Molecular and Biomolecular
Spectroscopy 69(2), 378-382.
Search WWH ::




Custom Search