Geology Reference
In-Depth Information
time. At present, the hope of seeing changes in the
fluxes of meteorites to the Antarctic ice sheet goes
unfulfilled, but with meteorite pairing relations better
understood and more terrestrial ages known, progress
on that front can be expected. For the practicing
meteoriticist looking for a sample of, say, Semarkona,
neither the Antarctic Meteorite Newsletter nor the
NIPR Meteorite Newsletter may ever supplant the
Catalogue of the Natural History Museum, London , or
its electronic successors. But those newsletters describe
finds with a pedigree, abundance, and availability unri-
valed elsewhere.
terrestrial age dated ordinary chondritic meteorites from hot
desert regions, Geochim. Cosmochim. Acta, 62 , 3169-3184.
Bogard, D. D., L. E. Nyquist, and P. Johnson (1984), Noble gas
contents of shergottites and implications for the martian origin
of SNC meteorites, Geochim. Cosmochim. Acta, 48 , 1723-1739.
Cassidy, W., R. Harvey, J. Schutt, G. Delisle, and K. Yanai
(1992), The meteorite collection sites of Antarctica.
Meteoritics Planet. Sci., 27 , 490-525.
Chmeleff, J., F. von Blanckenburg K., Kossert, and D. Jakob
(2010), Determination of the 10 Be half-life by multicollector
ICP-MS and liquid scintillation counting, Nuclear Instru.
Meth. Phys. Res., B 268 , 192-199.
Dennison, J. E., and M. E. Lipschutz (1987), Chemical studies
of H chondrites: II. Weathering effects in the Victoria Land,
Antarctic population and comparison of two Antarctic pop-
ulations with non-Antarctic falls, Geochim. Cosmochim. Acta,
51 , 741-754.
Eugster, O. (1989), History of meteorites from the Moon col-
lected in Antarctica, Science, 245 , 1197-1202.
Eugster, O., A. Weigel, and E. Polnau (1997), Ejection times of
martian meteorites, Geochim. Cosmochim. Acta,
Acknowledgments . We thank Rainer Wieler, an anony-
mous reviewer, and Kevin Righter for many helpful com-
ments. This work was supported in part by the NASA
Cosmochemistry program.
REFERENCES
61 ,
2749-2757.
Eugster, O., G. F. Herzog, K. Marti, and M. W. Caffee (2006),
Recent irradiation and cosmic-ray exposure ages, in
Meteorites and the Early Solar System II, edited by D. S.
Lauretta and H. Y. McSween Jr., U. Arizona Press, Tucson,
Arizona (pp. 829-851).
Evans, J. C., and J. H. Reeves (1987), 26 Al survey of Antarctic
meteorites, Earth Planet. Sci. Lett., 82 , 223-230.
Evans, J. C., J. H. Reeves, and L. A. Rancitelli (1982),
Aluminum-26: Survey of Victoria Land Meteorites, in
Catalog of Meteorites from Victoria Land, Antarctica, 1978-
1980, edited by U. B. Marvin and B. Mason, Smithsonian
Contrib. Earth Sci., 24 , 70-74.
Fernandes, V. A., R. Burgess, and A. Morris (2009), 40 Ar- 39 Ar
age determinations of lunar basalt meteorites Asuka 881757,
Yamato 793169, Miller Range 05035, La Paz Icefield 02205,
Northwest Africa 479, and basaltic breccia Elephant Moraine
96008, Meteoritics Planet. Sci., 44 , 805-821.
Fireman, E. L. (1978), Carbon-14 in lunar soil and in meteor-
ites, Lunar Planet. Sci. Conf., 9 (2), New York, Pergamon
Press (pp. 1647-1654).
Fireman, E. L., and T. L. Norris (1981), Ages and composition
of gas trapped in Allan Hills and Byrd core ice, Earth Planet.
Sci. Lett., 60 , 339-350.
Fireman, E. L., L. A. Rancitelli, and T. Kirsten (1979),
Terrestrial ages of four Allan Hills meteorites: Consequences
for Antarctic ice, Science, 203 , 453-455.
Folco, L., K. C. Welten, A. J. T. Jull, K. Nishiizumi, and A.
Zeoli (2006), Meteorites constrain the age of Antarctic ice at
the Frontier Mountain blue ice field (northern Victoria
Land), Earth Planet. Sci. Lett., 248 , 209-216.
Gibson, E. K., Jr., and D. D. Bogard 1978. Chemical alterations
of the Holbrook chondrite resulting from terrestrial
weathering. Meteoritics , 13 , 277-289.
Gladman, B. (1997), Destination Earth: Martian meteorite
delivery, Icarus, 130 , 228-246.
Akridge, J. M. C., P. H. Benoit, and D. W. G. Sears (2000),
Terrestrial age measurements using natural thermolumi-
nescence of a drained zone under the fusion crust of
Antarctic ordinary chondrites, Meteoritics Planet. Sci., 35 ,
869-874.
Al-Kathiri, A., B. A. Hofmann, A. J. T. Jull, and E. Gnos
(2005), Weathering of meteorites from Oman: Correlation of
chemical and mineralogical weathering proxies with 14 C ter-
restrial ages and the influence of soil chemistry, Meteoritics
Planet. Sci., 40 , 1215-1239.
Ammon, K., J. Masarik, and I. Leya (2009), New model calcu-
lations for the production rates of cosmogenic nuclides in
iron meteorites, Meteoritics Planet. Sci., 44 , 485-503.
Arnold, J. R. (1965), The origin of meteorites as small bodies:
II. The model, Astrophys. J., 141 , 1536-1547 .
Baglin, C. M. (2008), Nuclear data sheets for A = 81, Nuclear
Data Sheets, 109 , 2257-2437.
Benoit, P. H., A. J. T. Jull, S. W. S. McKeever, and D. W. G. Sears
(1991), The natural thermoluminescence of meteorites: VI.
Carbon-14, thermoluminescence and the terrestrial ages of
meteorites, Meteoritics , 28 , 196-203.
Berezhnoy, A. A., T. E. Bunch, P. Ma, G. F. Herzog, K. Knie, G.
Rugel, T. Faestermann, and G. Korschinek (2010), Al-26,
Be-10, and Mn-53 in martian meteorites (Abstract #5306),
Meteoritics Planet. Sci., 45 , A13.
Biswas, S., H. T. Ngo, and M. E. Lipschutz (1980), Trace
element contents of selected Antarctic meteorites: I.
Weathering effects and ALHA A77005, A77257, A77278 and
A77299, Zeitschrift f. Naturforsch., 35a , 191-196.
Bland, P. A., F. J. Berry, T. B. Smith, S. J. Skinner, and C. T.
Pillinger (1996), The flux of meteorites to the Earth and
weathering in hot desert ordinary chondrite finds, Geochim.
Cosmochim. Acta, 60 , 2053-2059.
Bland, P. A., A. S. Sexton, A. J. T. Jull, A. W. R. Bevan, F. J.
Berry, D. M. Thornley, T. R. Astin, D. T. Britt, and C. T.
Pillinger (1998), Climate and rock weathering: A study of
Search WWH ::




Custom Search