Geology Reference
In-Depth Information
66. MiL 05035—UNBRECCiATED LUNAR
gABBRo
chemical analysis of the lunar mare basalt meteorites
LaPaz icefield 02205, 02224 and 02226, Meteorit. Planet.
Sci. , 41 , 1003-1025.
[512] Rankenburg, K., A. D. Brandon, and M. D. Norman
(2007), A Rb-Sr and Sm-Nd isotope geochronology and
trace element study of lunar meteorite LaPaz icefield
02205, Geochim. Cosmochim. Acta, 71 , 2120-2135.
[513] Righter, K., S. J. Collins, and A. D. Brandon (2005),
Mineralogy and petrology of the LaPaz icefield lunar
mare basaltic meteorites, Meteorit. Planet. Sci. , 40 ,
1703-1722.
[514] Spicuzza, M. J., J. M. D. Day, L. A. Taylor, and J. W.
Valley (2007), oxygen isotope constraints on the origin
and differentiation of the Moon, Earth and Planetary
Science Letters, 253 , 254-265.
[515] Zeigler, R. A., R. L. Korotev , B. L. Jolliff, and L. A.
Haskin (2005), Petrography and geochemistry of the
LaPaz icefield basaltic lunar meteorite and source crater
pairing with Northwest Africa 032, Meteorit. Planet. Sci.
40 , 1073-1101.
[516] Zhang, A., W. Hsu, Q. Li, y. Liu, y. Jiang, and g. Tang
(2010), SiMS Pb/Pb dating of Zr-rich minerals in lunar
meteorites Miller Range 05035 and LaPaz icefield 02224:
implications for the petrogenesis of mare basalt, Science
China Earth Sciences, 53 , 327-334.
[500] Arai, T., B. R. Hawke, T. A. giguere, K. Misawa,
M.  Miyamoto, and H. Kojima (2010), Antarctic lunar
meteorites yamato-793169, Asuka-881757, MiL 05035, and
MET 01210 (yAMM): Launch pairing and possible crypto-
mare origin, Geochim. Cosmochim. Acta, 74 , 2231-2248.
[501] Joy, K. H., i. A. Crawford, M. Anand, R. C. greenwood,
i. A. Franchi, and S. S. Russell (2008), The petrology and
geochemistry of Miller Range 05035: A new lunar gabbroic
meteorite, Geochim. Cosmochim. Acta , 72 , 3822-3844.
[502] Liu, y., C. Floss, J. M. D Day, E. Hill, and L. A. Taylor
(2009), Petrogenesis of lunar mare basalt meteorite Miller
Range 05035, Meteorit. Planet. Sci., 44 , 261-284.
[503] Nyquist, L. E., C.-y. Shih, and y. D. Reese (2007),
Sm-Nd and Rb-Sr ages for MiL 05035: implications
for surface and mantle sources, Lunar Planet. Sci., 38 ,
abstract 1702.
[504] Zhang, A., W. Hsu, Q. Li, y. Liu, y. Jiang, and g. Tang
(2010), SiMS Pb/Pb dating of Zr-rich minerals in lunar
meteorites Miller Range 05035 and LaPaz icefield 02224:
implications for the petrogenesis of mare basalt, Science
China Earth Sciences,
53 , 327-334. doi: 10.1007/
s11430-010-0041-z.
67. LAP 02205—UNBRECCiATED LUNAR BASALT
68. MAC 88105—LUNAR ANoRTHoSiTiC
BRECCiA
[505] Anand, M., L. A. Taylor, C. Floss, C. R. Neal, K. Terada,
and S. Tanikawa (2006), Petrology and geochemistry of
LaPaz icefield 02205: A new unique low-Ti mare-basalt
meteorite, Geochim. Cosmochim. Acta, 70, 246-264 .
[506] Day, J. M. D., and L. A. Taylor (2007), on the structure
of mare basalt lava flows from textural analysis of the
LaPaz icefield and Northwest Africa 032 lunar meteor-
ites, Met. Planet. Sci. , 42 , 3-18.
[507] Day, J. M. D., L. A. Taylor, C. Floss , A. D. Patchen, D. W.
Schnare, and D. g. Pearson (2006), Comparative
petrology, geochemistry, and petrogenesis of evolved, low-
Ti lunar mare basalt meteorites from the LaPaz icefield,
Antarctica, Geochim. Cosmochim. Acta , 70 , 1581-1600.
[508] Day, J. M. D., D. g. Pearson, and L. A. Taylor (2007),
Highly siderophile element constraints on accretion
and  differentiation of the Earth-Moon system, Science,
315 , 217-219.
[509] Fernandes, V. A., R. Burgess, and A. Morris (2009),
40 Ar- 39 Ar age determinations of lunar basalt meteorites
Asuka 881757, yamato 793169, Miller Range 05035,
LaPaz icefield 02205, Northwest Africa 479, and basaltic
breccia Elephant Moraine 96008, Meteorit. Planet. Sci.,
44 , 805-821.
[510] Hill, E., L. A. Taylor, C. Floss, and y. Liu (2009), Lunar
meteorite LaPaz icefield 04841: Petrology, texture, and
impact-shock effects of a low-Ti mare basalt, Meteorit.
Planet. Sci., 44 , 87-94.
[511] Joy, K. H., i. A. Crawford, H. Downes, S. S. Russell, and
A. T. Kearsley (2006), A petrological, mineralogical and
[517] Cohen, B. A., T. D. Swindle, and D. A. Kring (2000),
Support for the lunar cataclysm hypothesis from lunar
meteorite impact melt ages. Science, 290 , 1754-1756.
[518] Cohen, B. A., T. D. Swindle, and D. A. Kring (2005),
geochemistry and 40 Ar- 39 Ar geochronology of impact-
melt clasts in feldspathic lunar meteorites: implications
for lunar bombardment history, Meteorit. Planet. Sci.,
40 , 755-777.
[519] Delano, J. W. (1991), geochemical comparison of impact
glasses from lunar meteorites ALH A81005 and
MAC88105 and Apollo 16 regolith 64001, Geochim.
Cosmochim. Acta , 55 , 3019-3029.
[520] Eugster, o., M. Burger, U. Krähenbühl, Th. Michel,
J. Beer, H. J. Hofmann, H. A. Synal, W. Woelfli, and R. C.
Finkel (1991), History of the paired lunar meteorites
MAC 88104 and MAC 88105 derived from noble gas iso-
topes, radionuclides, and some chemical abundances,
Geochim. Cosmochim. Acta, 55 , 3139-3148.
[521] Jolliff, B. L., R. L. Korotev, and L. A. Haskin (1991),
A  ferroan region of the lunar highlands as recorded in
meteorites MAC 88104 and MAC 88105, Geochim.
Cosmochim. Acta , 55 , 3051-3071.
[522] Koeberl, C., g. Kurat, and F. Brandstätter (1991),
MAC 88105—A regolith breccia from the lunar high-
lands: Mineralogical, petrological, and geochemical
studies, Geochim. Cosmochim. Acta , 55 , 3073-3087.
[523] Korotev, R. L., B. L. Jolliff, R. A. Zeigler, J. J. gillis, and
L. A. Haskin (2003), Feldspathic lunar meteorites and
Search WWH ::




Custom Search