Geology Reference
In-Depth Information
[280] Crozaz, g., C. Floss, and M. Wadhwa (2007), Chemical
alteration and REE mobilization in meteorites from hot and
cold deserts, Geochim. Cosmochim. Acta , 67 , 4727-4741.
[281] Floss, C. (2000), Complexities on the acapulcoite-lodranite
parent body: Evidence from trace element distributions in
silicate minerals, Meteorit. Planet. Sci. , 35 , 1073-1085.
[282] Mittlefehldt, D. W., M. M. Lindstrom, D. D. Bogard, D.
H. garrison, and S. W. Field (1996), Acapulco- and
Lodran-like achondrites: Petrology, geochemistry, chro-
nology, and origin, Geochim. Cosmochim. Acta , 60 ,
867-882.
[283] McCoy, T. J., K. Keil, R. N. Clayton, T. K. Mayeda, D. D.
Bogard, D. H. garrison, and R. Wieler (1997), A petro-
logic and isotopic study of lodranites: Evidence for early
formation as partial melt residues from heterogeneous
precursors, Geochim. Cosmochim. Acta , 61 , 623-637.
[284] Patzer, A., D. H. Hill, and W. V. Boynton (2004),
Evolution and classification of acapulcoites and lodran-
ites from a chemical point of view, Meteorit. Planet. Sci. ,
39 , 61-85.
[285] Rubin, A. E. (2007), Petrogenesis of acapulcoites and
lodranites: A shock-melting model, Geochim. Cosmochim.
Acta , 71 , 2383-2401.
[294] gibson, E. K., Jr., and F. F. Andrawes (1980), The
Antarctic environment and its effect upon the total
carbon and sulfur abundances recovered in meteorites,
Lunar Planet. Sci. Conf. , 11 (12), 1223-1234.
[295] goodrich, C. A., E. R. D. Scott, and A. M. Fioretti
(2004), Ureilitic breccias: Clues to the petrologic struc-
ture and impact disruption of the ureilite parent asteroid,
Chemie der Erde , 64 , 283-327.
[296] goodrich, C. A. (1992), Ureilites: A critical review,
Meteoritics , 27 , 327-352.
[297] Miyamoto, M., H. Takeda, and H. Toyoda (1985),
Cooling history of some Antarctic ureilites, J. Geophys.
Res. , 90 , D116-D122.
[298] Nakamuta, y., and y. Aoki (2000), Mineralogical evi-
dence for the origin of diamond in ureilites, Meteorit.
Planet. Sci. , 35 , 487-494.
[299] okazaki, R., T. Nakamura, N. Takaoka, and K. Nagao
(2003), Noble gases in ureilites released by crushing,
Meteorit. Planet. Sci. , 38 , 767-781.
[300] Rai, V. K., S. V. S. Murty, and U. ott (2002), Nitrogen in
diamond-free ureilite Allan Hills 78019: Clues to the
origin of diamond in ureilites, Meteorit. Planet. Sci. , 37 ,
1045-1055.
[301] Rai, V. K., S. V. S. Murty, and U. ott (2003), Noble gases
in ureilites: Next term cosmogenic, radiogenic, and
trapped components, Geochim. Cosmochim. Acta , 67 ,
4435-4456.
[302] Rankenburg, K., A. D. Brandon, and M. Humayun
(2007), osmium isotope systematics of ureilites, Geochim.
Cosmochim. Acta , 71 , 2402-2413.
[303] Rubin, A. E. (2006), Shock, post-shock annealing, and
post-annealing shock in ureilites, Meteoritics ,
43. LEW 88763—UNgRoUPED ACHoNDRiTE
[286] Clayton, R. N., and T. K. Mayeda (1996), oxygen isotope
studies of achondrites, Geochim. Cosmochim. Acta , 60 ,
1999-2017.
[287] gardner-Vandy, K. g., T. J. McCoy, and D. S. Lauretta
(2009), Formation conditions of Feo-rich primitive
achondrites, Lunar Planet. Sci. Conf. , 40 , 2520.
[288] greenwood, R. C., i. A. Franchi, J. A. gibson, and g. K.
Benedix (2007), oxygen isotope composition of the prim-
itive achondrites, Lunar and Planetary Science , 28 , 2163 .
[289] Mittlefehldt, D. W., D. D. Bogard, J. L. Berkley, and D.
H. garrison (2003), Brachinites: igneous rocks from a
differentiated asteroid, Meteorit. Planet. Sci. ,
41 ,
125-133.
[304] Spitz, A. H., and W. V. Boynton (1991), Trace element
analysis of ureilites: New constraints on their petrogen-
esis, Geochim. Cosmochim. Acta , 55 , 3417-3430.
[305] Sinha, S. K., R. o. Sack, and M. E. Lipschutz (1997),
Ureilite meteorites: Equilibration temperatures and
smelting reactions, Geochim. Cosmochim. Acta , 61 ,
4235-4242.
[306] Takeda, H., H. Mori, K. yanai, and K. Shiraishi (1980),
Mineralogical examination of the Allan Hills achondrites
and their bearing on the parent bodies, Mem. Natl. Inst.
Polar Res. , 17 (Spec. issue), 119-144.
[307] Toyoda, H., N. Haga, o. Tachikawa, H. Takeda, and T.
ishii (1986), Thermal history of ureilite, Pecora
Escarpment 82506 deduced from cation distribution and
diffusion profile of minerals, Mem. Natl. Inst. Polar Res. ,
41 (Spec. issue) 206.
[308] Tribaudino, M., D. Pasqual, g. Molin, and L. Secco
(2003), Microtextures and crystal chemistry in P21/c
pigeonites, Mineralogy and Petrology , 77 (3-4), 161-176.
[309] Wacker, J. F. (1986), Noble gases in the diamond-free
ureilite, ALH A78019: The roles of shock and nebular
processes, Geochim. Cosmochim. Acta , 50 , 633-642.
[310] Wang, M.-S., and M. E. Lipschutz (1995), Volatile trace
elements in Antarctic ureilites, Meteoritics , 30 , 319.
38 ,
1601-1625.
[290] Swindle, T. D., D. A. Kring, M. K. Burkland, D. H. Hill,
and W. V. Boynton (1998), Noble gases, bulk chemistry,
and petrography of olivine-rich achondrites Eagles Nest
and LEW 88763: Comparison to brachinites, Meteorit.
Planet. Sci. , 33 , 31-48.
44. ALH 78019—UREiLiTE
[291] Berkley, J. L., and J. H. Jones (1982), Primary igneous
carbon in ureilites: Petrological implications, Lunar Planet.
Sci. Conf. , 13 , A353-A364.
[292] Clayton, R. N., and T. K. Mayeda (1996), oxygen isotope
studies of achondrites, Geochim. Cosmochim. Acta , 60 ,
1999-2017.
[293] Farquhar, J., T. L. Jackson, and M. H. Thiemens (2000),
A 33 S enrichment in ureilite meteorites: Evidence for a
nebular sulfur component, Geochim. Cosmochim. Acta , 64 ,
1819-1825.
Search WWH ::




Custom Search