Information Technology Reference
In-Depth Information
Define the weighted Sobolev space
(G) · ρ ,
C 0
W ρ =
(4.20)
where the weighted Sobolev norm
· ρ is defined by
R
2
(s 2 ρ
2
2 ) d s,
ρ :=
|
|
+|
|
ϕ
s ϕ
ϕ
0
ρ
1 .
(4.21)
0
C 0
For ϕ,φ
(G) , we define the bilinear form
2 σ 2
s 2 ρ s ϕ∂ s φ d s + ρσ 2
R
R
1
a CEV
ρ
s 2 ρ 1 s ϕφ d s
(ϕ, φ) :=
0
0
r
r
R
R
s∂ s ϕφ d s
+
ϕφ d s.
(4.22)
0
0
The variational formulation of ( 4.19 ) is based on the triple of spaces
V =
W ρ
L 2 (G)
= H
W ρ = V , and reads:
H =
L 2 (J
H 1 (J
L 2 (G)) such that
Find v
;
W ρ )
;
a CEV
+
=
(∂ t v,w)
(v, w)
0 ,
w
W ρ , a.e. in J,
(4.23)
ρ
v( 0 )
=
g.
To establish well-posedness of ( 4.23 ), we show continuity and coercivity of the
bilinear form a CEV
ρ
( · , · ) on W ρ .
Proposition 4.5.1 Assume r> 0. There exist C 1 ,C 2 > 0 such that for ϕ,φ W ρ
a CEV
ρ
|
(ϕ, φ)
|≤
C 1
ϕ
ρ
φ
ρ
∈[
0 , 1
]\{
1 / 2
}
,
(4.24)
1
2 .
a CEV
2
(ϕ, ϕ)
C 2
ϕ
ρ ,
0
ρ
(4.25)
ρ
C 0
Proof Let ϕ
(G) . By Hardy's inequality, for ε
=
1, ε> 0, and any R> 0
2 d s
2 d s
R
1
2
R
1
2
2
s ε 2
s ε
| ϕ |
| s ϕ |
,
(4.26)
|
|
ε
1
0
0
we find with ε
=
2 ρ
=
1, that
2
s 2 ρ 1 s ϕφ d s
s 2 ρ (∂ s ϕ) 2 d s
s 2 ρ 2 φ 2 d s
R
R
1
R
1
2
0
0
0
2
ϕ
ρ
|
φ
ρ
|
2 ρ
1
Search WWH ::




Custom Search