Information Technology Reference
In-Depth Information
=
:
V
Lemma B.3.6 Assume ( B.4b ) with λ
0 ,α> 0, and that we are given w
J
,
V
L loc (
L loc (
; H )
s
:
J
and r
:
J
→ R +
with I loc ( 0 ,
)
:=
[
0 ,
)
; V
)
[
0 ,
)
and
w,w
I loc ( 0 ,
), w(t)
K
for t> 0 ,
(B.38a)
L loc ( 0 ,
r(t)
),
(B.38b)
L loc (
L loc (
; V ),
s(t)
=
p(t)
+
q(t)
;
p(t)
[
0 ,
),
H
), q(t)
[
0 ,
)
(B.39)
and such that
w + A
w,w
V , V
s(t),w(t)
V , V +
r(t).
(B.40)
Define , for T> 0 and for any decomposition ( B.39 ),
:= α
X(T )
:=
w
L (J ; H ) ,Y(T)
w
L 2 (J ; V ) ,
(B.41)
2 R(T )
1
2
1
α q
2
2
P(T) := p L 1 (J ; H ) ,Q(T) :=
w( 0 )
H +
L 2 (J ; V ) +
,
(B.42)
θ
:=
R(T )
sup
0 <θ<T
r(τ) d τ.
(B.43)
0
Then it holds
+ P(T) 2
Q(T ) 2
1
2
max
{
X(T ),Y(T )
}≤
P(T)
+
(B.44)
R(T ) .
C
I( 0 ,T )
H +
S( 0 ,T ) +
w
w( 0 )
s
(B.45)
Proof We integrate ( B.40 ) over J and, by ( B.4b ) with λ
=
0, obtain with ( B.39 ) and
|
q,w
V , V |≤
q
w
V
2 α
T
2
2
V
w(T )
H +
w(τ)
d τ
0
2
T
2
w( 0 )
H +
p(τ)
H
w(τ)
H
d τ
0
2
T
+
q(τ)
w(τ)
V d τ
+
2 R(T ).
0
Q(T ) 2 . Now we argue as in the
proof of Lemma B.3.4 to obtain ( B.44 ). On the right hand side of ( B.44 ), we may
take the infimum over all decompositions ( B.39 ).
2
Y(T) 2
This implies
w(T )
+
2 X(T )P(T )
+
e λt w(t) , and
e λt s ,
Remark B.3.7 If in ( B.4b ) λ> 0, we define
w(t)
=
s
=
p
=
e λt p ,
e λt q ,
e 2 λt r . The new quantities satisfy
w + A w, w V , V s, w V , V + r,
q
=
r
=
(B.46)
Search WWH ::




Custom Search