Information Technology Reference
In-Depth Information
14.6.1 Wavelet Compression
To define the compression scheme, we need to introduce some notation. Consider
tensor product wavelets ψ , k =
ψ 1 ,k 1 ⊗···⊗
ψ d ,k d , ψ , k =
ψ 1 ,k 1 ⊗···⊗
ψ d ,k d .
The distance of support in each coordinate direction is denoted by
δ x i :=
dist
{
supp ψ i ,k i , supp ψ i ,k i }
,
for i
=
1 ,...,d , and the distance of singular support
dist
i ,
{
singsupp ψ i ,k i , supp ψ i ,k i }
if i
δ sing
:=
x i
dist
{
supp ψ i ,k i , singsupp ψ i ,k i }
else .
Define
L(p
|
|
|
|
|
|
α/ 2 )
p
if p(L
)
α/ 2 (L
),
L , :=
|
|
α/ 2
else
p
)
L(p
α/ 2 )
if p(L
α/ 2 (L
),
α/ 2
+
(14.24)
else
and m i := i + i
{ i , i }
c
2min
. Furthermore, we denote the index sets
I
, , I ,
{
1 ,...,d }
by
i
δ x i > 2 min { i , i } ,
c
c
I
, =
∈{
1 ,...,d
}:
I , ={
1 ,...,d
}\ I
, , (14.25)
and set
β i , = L , p( i + i ) + α
j
m j p
j
1
2
{ j , j }+
min
m j ,
c
, \{
=
i
j
I ,
I
i
}
{ i , i }+ α
j
m j p
j I
1
2
β i , = L , p max
{ j , j }+
min
m j .
c
,
=
i
j
I , \{ i }
(14.26)
The cut-off parameters are now defined by
a i max 2 min { i , i } , 2 β i , /( 2 p + α) , i > 1 ,
i
B
, =
a i max 2 max { i , i } , 2 β i , /(p + α) ,
B
i
, =
a i > 1 .
We define a multidimensional version of Theorem 12.2.2. A proof can be found in
[134, Theorem 4.6.3].
Theorem 14.6.1 Let X be a Lévy process with Lévy density k satisfying ( 14.23 ).
Define the compression scheme by
c
,
i
0
if
i
I
:
δ x i >
B
, ,
δ sing
A ( , k ),( , k ) =
> B
i
I ,
:
0
if
i
, ,
x i
A ( , k ),( , k )
else.
Search WWH ::




Custom Search