Information Technology Reference
In-Depth Information
( 2 π) 2 det
1
2 s
d
2 e z θs, Q 1 (z θs) /( 2 s) e
s
ϑ (ϑs) 1 d s d z
Q
ν(B)
=
B
0
2 e θ, Q 1 + Q
( 2 π) 2 ϑ 1 det
1
Q
z
=
2
B
1 e z, Q 1 z
θ, Q 1 θ
2
ϑ s d s d z
d
2
1
s
+
×
2 s
0
2 e θ, Q 1 + Q
( 2 π) 2 ϑ 1 det
1
d
2
1 e β s γs d s d z,
Q
z
s
=
2
B
0
Q 1 z
Q 1 θ
where β
=
z,
/ 2 and γ
=
θ,
/ 2
+
1 . Integrating the second inte-
gral, we obtain the Lévy measure
β
γ
d/ 4
K d/ 2 2 βγ d z,
(14.12)
2 e θ, Q 1 + Q
2 ( 2 π) 2 ϑ 1 det
1
Q
z
ν( d z)
=
2
where K
d/ 2 (ξ ) is the modified Bessel function of the second kind. For small ξ ,we
have K d/ 2 (ξ )
ξ d/ 2 , and therefore ν( d z)
Q 1 z
d/ 2 d z
| d d z since
z,
∼ |
z
> 0. The marginal processes X i , i
Q
=
1 ,...,d of X are vari ance gamma processes
ϑ 1 e θ i i z e 2 + θ i i i | z | |
| 1 d z .Weplot
on
R
with Lévy measure ν i ( d z)
=
z
the density (10.9)for d
=
2, θ
=
(
0 . 1 ,
0 . 2 ) , σ
=
( 0 . 3 , 0 . 4 ) , ρ 12 =
0 . 5 and ϑ
=
1
in Fig. 14.3 .
14.3.2 Lévy Copula Models
Lévy copulas F allow parametric constructions of multivariate jump densities from
univariate ones. Let U 1 ,...,U d be one-dimensional tail integrals with Lévy density
k 1 ,...,k d , and let F be a Lévy copula such that 1 ··· d F exists in the sense of
distributions. Then,
k(x 1 ,...,x d ) = 1 ··· d F | ξ 1 = U 1 (x 1 ),...,ξ d = U d (x d ) k 1 (x 1 ) ··· k d (x d ) (14.13)
is the jump density of a d -variate Lévy measure with marginal Lévy densities
k 1 ,...,k d . For example, we can use the Clayton Lévy copula (see Definition 14.6 )
2 2 d d
u i | ϑ
1
ϑ
η 1 { u 1 ··· u d 0 }
η) 1 { u 1 ··· u d 0 } ,
1 |
F(u 1 ,...,u d )
=
( 1
i
=
where ϑ> 0, η ∈[
0 , 1
]
and consider α -stable marginal Lévy densities, k i (z) =
| z | 1 α i ,0 i < 2, i =
1 ,...,d . This leads to the d -dimensional Lévy density
1 d
α i ϑ
1
ϑ
d
d
1
1 α ϑ + 1
i
2 2 d
α i ϑ
α i
|
z i |
|
z i |
k(z)
=
+
(i
i
=
1
i
=
1
· η 1 { z 1 ··· z d 0 } +
η) 1 { z 1 ··· z d 0 } .
( 1
(14.14)
Search WWH ::




Custom Search