Information Technology Reference
In-Depth Information
1 ) N(v) F(v)
V F ((a, b
]
)
=
(
v ∈{ a 1 ,b 1 }×···×{ a d ,b d }
d
d
=
sgn u j F(u 1 ,...,u d )
sgn u j F(a 1 ,u 2 ...,u d )
0 .
j =
2
j =
2
Similarly for u 1 < 0. This gives the lower bound with a 1 =
0.
Let
I ={
i
}⊂{
1 ,...,d
}
. Then,
d
sgn u j F(u 1 ,...,u i ,...u d )
j
=
1
j
F(n sgn u 1 ,...,u i ,...,n sgn u d )
sgn u i lim
n →∞
sgn u j
c
I
j
F(v 1 ,...,u i ,...,v d )
sgn u i lim
n →∞
sgn v j
c
c
∞} | I
|
I
(v j ) j I
∈{−
n,
c
sgn u i F i (u i ) = | u i | .
=
Since i ∈{
is arbitrary, we obtain the upper bound.
To simplify notation, we suppose 0
1 ,...,d }
u i
=
v i , i
1 ,...,d . The general case can
be treated similarly. We have
|
F(v 1 ,...,v d )
F(u 1 ,...,u d )
|
= |
V F (( 0 ,v 1 ]×···×
( 0 ,v d ]
)
V F (( 0 ,u 1 ]×···×
( 0 ,u d ]
)
|
d
V F (
i
i
1
d
lim
a
a,
∞]
×
(u i ,v i
(
a,
∞]
→∞
i =
1
d
F i (v i )
F i (u i )
=
i
=
1
d
=
1 | v i u i | .
i
=
We also need tail integrals of Lévy processes.
d
Definition 14.2.5 Let X be a Lévy process with state space
R
and Lévy measure ν .
d
The tail integral of X is the function U
: R
\{
0
}→R
given by
sgn (x j
I(x j ) ,
d
d
U(x 1 ,...,x d )
=
i
=
1
j
=
1
Search WWH ::




Custom Search