Information Technology Reference
In-Depth Information
Thetwotermsin( 13.30 ) are estimated separately. Since g is globally Lipschitz, we
have for the first term, where f(e y )
g(e x ) and constants may change between
=
lines,
E
f(e y + Y T t ) f(e y + Y T t )
| v(t,y) v(t, y) | =
T t
d
e y i + Y ε,i
e y i + Y T t
C
1 E
i =
1
d
e s i W T t
e y i + λ i (T t)
= C
E
i = d(ε) +
1
e y i + λ i (T t)
d
e z 2 /( 2 s i ) d z
e z
=
C
|
1
|
R
= d(ε)
i
+
1
d
d
e y i s i
s i .
C
C(y)
= d(ε)
= d(ε)
i
+
1
i
+
1
Similarly, using Lemma ( 13.4.1 ), we have for the second term
E
f(e y + Y T t )
f(e y + Y T t )
y ε ) =
v(t,
y)
˜
v(t,
ˆ
t
d
e y i + Y ε,i
e y i + Y ε,i
C
1 E
T
t
T
i
=
e 1 { 1 i d(ε) } s i W T t
e λ i (T t)
d
e y i
e λ i (T t)
=
C
E
i =
1
d
d
d
1
2 s i (T
e y i +
t)
λ i λ i |≤
e y i ( 1
s i )
s j
|
+
C(y)
C(y)
i
=
1
i
=
1
j = d(ε) + 1
d
s j .
C(y)
= d(ε)
j
+
1
C (x) , which completes the proof.
Since y
=
U x , C(y)
=
13.4.2 Stochastic Volatility Models
Similarly to the one-dimensional case, multivariate stochastic volatility models re-
place the constant volatilities Σ ij in the Black-Scholes model ( 13.19 ) by stochastic
processes Σ ij =
f ij (Y ) , where f ij are non-negative functions and Y is an additional
source of randomness, which is modeled by an Itô diffusion in
d .
R
Search WWH ::




Custom Search