Information Technology Reference
In-Depth Information
C 0
R
Remark 10.4.1 Let ϕ,φ
(
) . Then, by the definition of the bilinear form
a J (
·
·
,
) and ( 10.17 ), we find
a J (ϕ, φ)
J ϕ)(x)φ(x) d x
ψ(ξ)e ixξ
=
(
A
=
ϕ(ξ) d ξφ(x) d x
R
R
R
ϕ(ξ)
ϕ(ξ)φ(ξ) d ξ.
e ixξ φ(x) d x d ξ
=
=
ψ(ξ)
ψ(ξ)
R
R
R
We want to show that a J (
·
,
·
) is continuous (3.8) and satisfies a Gårding inequality
H ρ (
V =
R
(3.9)on
) . By Remark 10.4.1 , it is sufficient to study the characteristic
exponent ψ . We do this in the following lemma.
Lemma 10.4.2 Let X be a Lévy process with characteristic triplet (σ 2 ,ν, 0 ) where
the Lévy measure satisfies ( 10.12 ), ( 10.13 ). Then , there exist constants C i > 0, i
=
1 , 2 , 3, for all ξ
∈ R
holds
2 ρ ,
2 ρ
ψ(ξ)
C 1 |
ξ
|
|
ψ(ξ)
|≤
C 2 |
ξ
|
+
C 3 .
1
0 and denote k sym
Proof Consider first σ =
=
2 (k(z) + k( z)) .Using( 10.13 ) and
2sin (z/ 2 ) 2
C 1 z 2
1
cos (z)
=
for
|
z
|≤
1, we obtain
cos (ξ z))k sym (z) d z C 1
1 /
|
ξ
|
ξ 2 z 2 k sym (z) d z
ψ(ξ) =
( 1
R
0
1 /
|
ξ
|
C 1 C
2
α .
For an upper bound, we first consider α< 1. Then, with
ξ 2 z 1 α d z =
C 1 C
α | ξ |
0
| z |≤ 1 |
z
|
ν( d z) <
and
( 10.12 ),
e iξz ν( d z)
1
1 /
|
ξ
|
| e iξz
| ψ(ξ) |=
1
| ν( d z) + C 2
R
1 / | ξ |
2
1 / | ξ |
|
ξz
|
ν( d z)
+
C 2
1 /
|
ξ
|
1 /
|
ξ
|
4 C +
1
| α d z
α
|
||
+
C 2
α |
|
+
4 C +
ξ
z
ξ
C 2 .
0
Similarly, we obtain for 1
α< 2 that
iξz ν( d z)
1
1 /
|
ξ
|
e iξz
e iξz
|
|=
+
|
|
+
C 3 +
C 4 |
|
ψ(ξ)
1
iξz
ν( d z)
ξ
R
1 /
|
ξ
|
1 /
|
ξ
|
1 /
|
ξ
|
2 ν( d z)
2
1
α d z
|
ξz
|
+
C 3 +
C 4 |
ξ
|≤
2 C
|
ξ
|
|
z
|
+
C 3 +
C 4 |
ξ
|
+
1 / | ξ |
0
α
C 6 .
For σ> 0, we immediately have
C 5 |
ξ
|
+
Search WWH ::




Custom Search