Chemistry Reference
In-Depth Information
20. Stewart, J.J.P. (1989). Optimization of
parameters for semiempirical methods I.
Method. J. Comput. Chem. , 10 , 209-220.
21. Hasanein, A.A. and Evans, M.W. (1996 ).
Computational methods in quantum chem-
istry , Quantum Chemistry, Vol. 2, World
Scientific Publishing, Singapore.
22. Parr, R.G., Donnely, A., Levy, M., and Pal-
ke, W. (1978). Electronegativity, The den-
sity functional viewpoint. J. Chem. Phys. ,
68 , 3801-3807.
23. Gyftpoulous, E.P. and Hatsopoulos, G.N.
(1968). Quantum thermodynamic definition
of electronegativity. Proc. Natl. Acad. Sci. ,
60 , 786-793.
24. Iczkowski, R.P. and Margrave, J.L. (1961).
Electronegativity. J. Am. Chem. Soc ., 83 ,
3547-3551.
25. Parr, R.G. and Pearson, R.G. (1983). Abso-
lute hardness, companion parameter to ab-
solute electronegativity. J. Am. Chem. Soc. ,
105 , 7512-7516.
26. Pearson, R.G. (1986). Absolute electronega-
tivity and hardness correlated with molecu-
lar orbital theory. Proc. Natl. Acad. Sci. , 83 ,
8440-8441.
27. Parr, R.G. and Yang, W. (1984). Density
functional approach to the frontier-electron
theory of chemical reactivity. J. Am. Chem.
Soc. , 106 , 4049-4050.
28. Maynard, A.T. and Covell, D.G. (2001).
Reactivity of zinc finger cores: Analysis of
protein packing and electrostatic screening.
J. Am. Chem. Soc. , 123 , 1047-1058.
29. Geerlings, P., Proft, F.D., and Langenaeker,
W. (2003). Conceptual density functional
theory. Chem. Rev. , 103 , 1793-1874.
30. Yang, W. and Parr, R.G. (1985). Hardness,
softness, and the Fukui function in the elec-
tronic theory of metals and catalysis. Proc.
Natl. Acad. Sci. USA , 82 , 6723-6726.
31. Fukui, K., Yonezawa, T., and Shingu, H.
(1952). A molecular orbital theory of reac-
tivity in aromatic hydrocarbons. J. Chem.
Phys. , 20 , 722-725.
32. Yang, W. and Mortier, W.J. (1986). The use
of global and local molecular parameters
for the analysis of the gas-phase basicity of
amines. J. Am. Chem. Soc. , 108 , 5708-5711.
33. Li, Y. and Evans, J.N.S. (1995). The Fukui
function: A key concept linking frontier
molecular orbital theory and the hard-soft-
acid-base principle. J. Am. Chem. Soc. , 117 ,
7756-7759.
34. Chattaraj, P.K., Maity, B., and Sarkar, U.
(2003). Philicity: A unified treatment of
chemical reactivity and selectivity. J. Phys.
Chem. A , 107 , 4973-4975.
35. Mulliken, R.S. (1955). Electronic popula-
tion analysis on LCAO-MO molecular wave
functions. I. J. Chem. Phys. , 23 , 1833-1840.
36. Csizmadia, G. (1976). Theory and practice
of MO calculations on organic molecules .
Elsevier, Amsterdam.
37. Pariser, R. and Parr, R.G. (1953). A semi-
empirical theory of the electronic spectra
and electronic structure of complex unsatu-
rated molecules. J. Chem. Phys. , 21 , 466-
477.
38. Pople, J.A. (1953). Electron interaction in
unsaturated hydrocarbons. Trans. Faraday
Soc. , 49 , 1375-1384.
39. Parr, R.G. (1963). Quantum theory of mo-
lecular electronic structure . W.A. Benja-
min, Inc., New York.
40. Pople, J.A. (1962). Reply to Letter by H.F.
Hameka. J. Chem. Phys. , 37 , 3009.
41. Fischer-Hjalmars, I. (1965). Deduction of
the zero differential overlap approximation
from an orthogonal atomic orbital basis. J.
Chem. Phys. , 42 , 1962-1972.
42. ArgusLab 4.0, M.A. Thompson, planaria
software LLC, seattle, WA. http://www.ar-
guslab.com
43. Torrent-Sucarrat, M., Proft, F.D., Geerlings,
P., and Ayers, P.W. (2008). Do the local soft-
ness and hardness indicate the softest and
hardest regions of a molecule? Chem. Eur.
J. , 14 , 8652-8660.
44. Damoun, S., Van de woude, G., Mandez, F.,
and Geerlings, P. (1997). Local softness as
a regioselectivity indicator in [4+2] cyclo-
addition reactions. J. Phys. Chem. A , 101 ,
886-893.
45. Pearson, R.G. (1963). Hard and soft acids
and bases. J. Am. Chem. Soc. , 85 , 3533-
3539.
 
Search WWH ::




Custom Search