Biomedical Engineering Reference
In-Depth Information
47. Yu H, Chang F, Cohen IS (1993) Phosphatase inhibition by calyculin A increases if in canine
Purkinje fibers and myocytes. Pfl
ugers Arch 422:614-616
48. Chang F, Cohen IS, DiFrancesco D et al (1991) Effects of protein kinase inhibitors on canine
Purkinje fibre pacemaker depolarization and the pacemaker current if. J Physiol 440:367-384
49. Vargas G, Lucero MT (2002) Modulation by PKA of the hyperpolarization-activated current
(Ih) in cultured rat olfactory receptor neurons. J Membr Biol 188:115-125
50. Accili EA, Redaelli G, DiFrancesco D (1997) Differential control of the hyperpolarization-
activated current (If) by cAMP gating and phosphatase inhibition in rabbit sino-atrial node
myocytes. J Physiol 500:643-651
51. Wu JY, Yu H, Cohen IS (2000) Epidermal growth factor increases I(f) in rabbit SA node cells
by activating a tyrosine kinase. Biochim Biophys Acta 1463:15-19
52. Renaudon B, Lenfant J, Decressac S et al (2000) Thyroid hormone increases the conductance
density of f-channels in rabbit sino-atrial node cells. Recept Channels 7:1-8
53. Pachuki J, Burmeister LA, Larsen PR (1999) Thyroid hormone regulates hyperpolarization-
activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res
85:498-503
54. Satoh H, Hashimoto K (1986) Electrophysiological study of alinidine in voltage clamped
rabbit sino-atrial node cells. Eur J Pharmacol 121:211-219
55. Millar JS, Vaughan Williams EM (1983) Pharmacological mapping of regional effects in the
rabbit heart of some new antiarrhythmic drugs. Br J Pharmacol 79:701-709
56. Snyders DJ, Van Bogaert PP (1987) Alinidine modifies the pacemaker current in sheep
Purkinje fibers. Pflugers Arch 410:83-91
57. Knaus A, Zong X, Beetz N et al (2007) Direct inhibition of cardiac hyperpolarization-
activated
cyclic
nucleotide-gated
pacemaker
channels
by
clonidine. Circulation
115:872-880
58. Goethals M, Raes A, Van Bogaert PP (1993) Use-dependent block of the pacemaker current I
(f) in rabbit sinoatrial node cells by zatebradine (UL-FS 49). On the mode of action of sinus
node inhibitors. Circulation 88:2389-2401
59. Raes A, Van de Vijver G, Goethals M et al (1998) Use-dependent block of Ih in mouse dorsal
root ganglion neurons by sinus node inhibitors. Br J Pharmacol 125:741-750
60. Van Bogaert PP, Goethals M, Simoens C (1990) Use- and frequency-dependent blockade by
UL-FS 49 of the if pacemaker current in sheep cardiac Purkinje fibres. Eur J Pharmacol
187:241-256
61. Van Bogaert PP, Raes A (1991) Use-dependent blockade of the If current by DK-AH3 in
sheep Purkinje fibres: kinetic characteristics. Arch Int Pharmacodyn 310:191
62. Van Bogaert PP, Pittoors F (2003) Use-dependent blockade of cardiac pacemaker current (If)
by cilobradine and zatebradine. Eur J Pharmacol 478:161-171
63. Stieber J, Wieland K, Stockl G et al (2006) Bradycardic and proarrhythmic properties of sinus
node inhibitors. Mol Pharmacol 69:1328-1337
64. DiFrancesco D (1994) Some properties of the UL-FS 49 block of the hyperpolarization-
activated current (i(f)) in sino-atrial node myocytes. Pflugers Arch 427:64-70
65. Cheng L, Kinard K, Rajamani R (2007) Molecular mapping of the binding site for a blocker
of hyperpolarization-activated,
cyclic nucleotide-modulated pacemaker
channels.
J
Pharmacol Exp Ther 322:931-939
66. Valenzuela C, Delp´n E, Franqueza L et al (1996) Class III antiarrhythmic effects of
zatebradine. Time-, state-, use-, and voltage-dependent block of hKv1.5 channels. Circula-
tion 94:562-570
67. Doerr T, Trautwein W (1990) On the mechanism of the “specific bradycardic action” of the
verapamil derivative UL-FS 49. Naunyn Schmiedebergs Arch Pharmacol 341:331-340
68. Thollon C, Cambarrat C, Vian J et al (1994) Electrophysiological effects of S 16257, a novel
sino-atrial node modulator, on rabbit and guinea-pig cardiac preparations: comparison with
UL-FS 49. Br J Pharmacol 112:37-42
Search WWH ::




Custom Search