Biomedical Engineering Reference
In-Depth Information
32. Richard EA, Miller C (1990) Steady-state coupling of ion-channel conformations to a
transmembrane ion gradient. Science 247:1208-1210
33. Rychkov GY, Pusch M, Astill DS et al (1996) Concentration and pH dependence of skeletal
muscle chloride channel ClC-1. J Physiol (Lond) 497:423-435
34. Rychkov GY, Pusch M, Roberts ML et al (1998) Permeation and block of the skeletal muscle
chloride channel, ClC-1, by foreign anions. J Gen Physiol 111:653-665
35. Schriever AM, Friedrich T, Pusch M et al (1999) ClC chloride channels in Caenorhabditis
elegans . J Biol Chem 274:34238-34244
36. Koch MC, Steinmeyer K, Lorenz C et al (1992) The skeletal muscle chloride channel in
dominant and recessive human myotonia. Science 257:797-800
37. Steinmeyer K, Klocke R, Ortland C et al (1991) Inactivation of muscle chloride channel by
transposon insertion in myotonic mice. Nature 354:304-308
38. Bosl MR, Stein V, Hubner C et al (2001) Male germ cells and photoreceptors, both
dependent on close cell-cell interactions, degenerate upon ClC-2 Cl - channel disruption.
EMBO J 20:1289-1299
39. Est ยด vez R, Better T, Stein V et al (2001) Barttin is a Cl - -channel beta-subunit crucial for
renal Cl - -reassertion and inner ear K + -secretion. Nature 414:558-561
40. Simon DB, Bindra RS, Mansfield TA et al (1997) Mutations in the chloride channel gene,
CLCNKB, cause Barter's syndrome type III. Nat Genet 17:171-178
41. Birkenhager R, Otto E, Schurmann MJ et al (2001) Mutation of BSND causes Bartter
syndrome with sensorineural deafness and kidney failure. Nat Genet 29:310-314
42. Jentsch TJ (2007) Chloride and the endosomal-lysosomal pathway: emerging roles of CLC
chloride transporters. J Physiol 578:633-640
43. Gunther W, Luchow A, Cluzeaud F, Vandewalle A et al (1998) ClC-5, the chloride channel
mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney
cells. Proc Natl Acad Sci USA 95:8075-8080
44. Edwards JC, Kahl CR (2010) Chloride channels of intracellular membranes. FEBS Lett 584:
2102-2111
45. Plans V, Rickheit G, Jentsch TJ (2009) Physiological roles of CLC Cl(
)/H(+) exchangers in
renal proximal tubules. Pflugers Arch 458:23-37
46. Graves AR, Curran PK, Smith CL et al (2008) The Cl - /H + antiporter ClC-7 is the primary
chloride permeation pathway in lysosomes. Nature 453:788-792
47. Kornak U, Casper D, Bosl MR et al (2001) Loss of the ClC-7 chloride channel leads to
osteopetrosis in mice and man. Cell 104:205-215
48. Frattini A, Pangrazio A, Susani L et al (2003) Chloride channel ClCN7 mutations are
responsible for severe, recessive, dominant, and intermediate osteopetrosis. J Bone Miner
Res 18:1740-1747
49. Chu K, Snyder R, Econs MJ (2006) Disease status in autosomal dominant osteopetrosis type
2 is determined by osteoclastic properties. J Bone Miner Res 21:1089-1097
50. Henriksen K, Gram J, Neutzsky-Wulff AV et al (2009) Characterization of acid flux in
osteoclasts from patients harboring a G215R mutation in ClC-7. Biochem Biophys Res
Commun 378:804-809
51. Kasper D, Planells-Cases R, Fuhrman JC et al (2005) Loss of the chloride channel ClC-7
leads to lysosomal storage disease and neurodegeneration. EMBO J 24:1079-1091
52. Barasch J, Kiss B, Prince A et al (1991) Defective acidification of intracellular organelles in
cystic fibrosis. Nature 352:70-73
53. Barriere H, Bagdany M, Bossard F et al (2009) Revisiting the role of cystic fibrosis
transmembrane conductance regulator and counterion permeability in the pH regulation of
endocytic organelles. Mol Biol Cell 20:3125-3141
54. Haggie PM, Verkman AS (2009) Defective organellar acidification as a cause of cystic
fibrosis lung disease: reexamination of a recurring hypothesis. Am J Physiol Lung Cell Mol
Physiol 296:L859-L867
55. Anderson MP, Gregory RJ, Thomson S et al (1991) Demonstration that CFTR is a chloride
channel by alteration of its anion selectivity. Science 253:202-205
Search WWH ::




Custom Search