Biomedical Engineering Reference
In-Depth Information
48. Smith MT, Cabot PJ, Ross FB et al (2002) The novel N-type calcium channel blocker, AM336,
produces potent dose-dependent antinociception after intrathecal dosing in rats and inhibits
substance P release in rat spinal cord slices. Pain 96:119-127
49. Meng GE, Ning WU, Zhang C et al (2008) Analgesic activity of ZC88, a novel N-type voltage-
dependent calcium channel blocker, and its modulation of morphine analgesia, tolerance and
dependence. Eur J Pharmacol 586:130-138
50. http://www.scirus.com
51. Takahara A, Fujita S, Moki K et al (2003) Neuronal Ca 2+ channel blocking action of an
antihypertensive drug, cilnidipine, IMR-32 human neuroblastoma cells. Hypertens Res
26:743-747
52. Yamamoto T, Niwa S, Iwayama S et al (2006) Discovery, structure-activity relationship
study, and oral analgesic efficacy of cyproheptadine derivatives possessing N-type calcium
channel inhibitory activity. Bioorg Med Chem 14:5333-5339
53. Yamamoto T, Niwa S, Ohno S et al (2008) The structure-activity relationship study on 2-,
5-and 6-position of the water soluble 1, 4-dihydropyridine derivatives blocking N-type
calcium channels. Bioorg Med Chem Lett 18:4813-4816
54. Seko T, Kato M, Kohno H (2002) Structure-activity study of L-cysteine-based N-type calcium
channel blockers: optimization of N- and C-terminal substituents. Bioorg Med Chem Lett
12:915-918
55. Knutsen LJS, Hobbs CJ, Earnshaw CG et al (2007) Synthesis and SAR of novel 2-aryl
thiazolidinones as selective analgesic N-type calcium channel blockers. Bioorg Med Chem
Lett 17:662-667
56. Zhang S, Su R, Zhang C et al (2008) C101 a novel 4-amino-piperidine derivative selectively
blocks N-type calcium channels. Eur J Pharmacol 587:42-47
57. Teodori E, Baldi E, Dei S et al (2004) Design, synthesis, and preliminary pharmacological
evaluation of 4- aminopiperidine derivatives as N-type calcium channel blockers active on
pain and neuropathic pain. J Med Chem 47:6070-6081
58. Gerald WZ, Zhong-Ping F, Lingyun Z et al (2009) Scaffold-based design and synthesis of
potent N-type calcium channel blockers. Bioorg Med Chem Lett 19:6467-6472
59. Hassan P, Zhong-Ping F, Yanbing D et al (2010) Structure-activity relationships of diphenyl-
piperazine N-type calcium channel inhibitors. Bioorg Med Chem Lett 20:1378-1383
60. Hansch C, Hoekman D, Leo A et al (2002) Chem-Bioinformatics: Comparative QSAR at the
interface between chemistry and biology. Chem Rev 102:783-812
61. Verma RP, Hansch C (2006) Cytotoxicity of organic compounds against ovarian cancer cells:
A quantitative structure-activity relationship study. Mol Pharm 3:441-450
62. Hansch C, Verma RP (2008) Understanding tubulin/microtubule-taxane interactions: a quan-
titative structure-activity relationship study. Mol Pharm 5:151-161
63. Garg D, Gandhi T, Mohan CG (2008) Exploring QSTR and toxicophore of hERG K + channel
blockers using GFA and HypoGen techniques. J Mol Graph Model 26:966-976
64. Awale M, Mohan CG (2008) Molecular docking guided 3D-QSAR CoMFA analysis of
N-4-pyrimidinyl-1H-indazol-4-amine Inhibitors of Leukocyte-specific protein tyrosine kinase.
J Mol Model 14:937-947
65. Gupta SP (2007) Quantitative structure-activity relationship studies on zinc-containing
metalloproteinase inhibitors. Chem Rev 107:3042-3087
66. Alvesalo JK, Siiskonen A, Vainio MJ et al (2006) Similarity based virtual screening: a tool for
targeted library design. J Med Chem 7:2353-2356
67. Burger A, Abraham DJ (2003) Burger's medicinal chemistry and drug discovery. Wiley, New
York
68. McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol
11:494-502
69. Gupta SP (2006) QSAR studies on calcium channel blockers. In: Gupta RR (Series Editor),
Gupta SP (Volume Editor) Topics in heterocyclic chemistry, vol 4; QSAR and molecular
modeling studies in heterocyclic drugs II. Springer, Berlin
Search WWH ::




Custom Search