Biomedical Engineering Reference
In-Depth Information
Miranda, P., Saiz, E., Gryn, K., et al., 2006. Sintering and robocasting of beta-trical-
cium phosphate scaffolds for orthopaedic applications. Acta Biomater 2: 457-66.
Ni, S. Y., Chou, L., and Chang, J., 2007. Preparation and characterization of forsterite
(Mg2SiO4) bioceramics. Ceram Inter 33: 83-8.
Ni, S., and Chang, J., 2009. In vitro degradation, bioactivity, and cytocompatibility of
calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. J
Biomater Appl 24: 139-58.
Ni, S., Chang, J., and Chou, L., 2006. A novel bioactive porous CaSiO3 scaffold for
bone tissue engineering. J Biomed Mater Res A 76: 196-205.
Ni, S., Chang, J., and Chou, L., 2008. In vitro studies of novel CaO-SiO2-MgO system
composite bioceramics. J Mater Sci Mater Med 19: 359-67.
Ni, S., Lin, K., Chang, J., et al., 2008. Beta-CaSiO3/beta-Ca3(PO4)2 composite materi-
als for hard tissue repair: In vitro studies. J Biomed Mater Res A 85: 72-82.
Nonami, T., and Tsutsumi, S., 1999. Study of diopside ceramics for biomaterials. J
Mater Sci Mater Med 10: 475-9.
Ou, J., Kang, Y., Huang, Z., et al., 2008. Preparation and in vitro bioactivity of novel
merwinite ceramic. Biomed Mater 3: 015015.
Peng, W., Liu, W., Zhai, W., et al., 2011. Effect of tricalcium silicate on the proliferation
and odontogenic differentiation of human dental pulp cells. J Endod 37: 1240-6.
Ramaswamy, Y., Wu, C., Dunstan, C. R., et al., 2009. Sphene ceramics for orthopedic
coating applications: An in vitro and in vivo study. Acta Biomater 5: 3192-204.
Ramaswamy, Y., Wu, C., Van Hummel, A., et al., 2008. The responses of osteoblasts,
osteoclasts and endothelial cells to zirconium modified calcium-silicate-based
ceramic. Biomaterials 29: 4392-402.
Ramaswamy, Y., Wu, C., Zhou, H., et al., 2008. Biological response of human bone
cells to zinc-modified Ca-Si-based ceramics. Acta Biomater 4: 1487-97.
Schwarz, K., 1973. A bound form of silicon in glycosaminoglycans and polyuronides.
Proc Natl Acad Sci USA 70: 1608-12.
Sun, H., Wu, C., Dai, K., et al., 2006. Proliferation and osteoblastic differentiation of
human bone marrow-derived stromal cells on akermanite-bioactive ceramics.
Biomaterials 27: 5651-7.
Tavangarian, F., and Emadi, R., 2011a. Effects of mechanical activation and chlorine
ion on nanoparticle forsterite formation. Mater Lett 65: 126-9.
Tavangarian, F., and Emadi, R., 2011b. Improving degradation rate and apatite forma-
tion ability of nanostructure forsterite. Ceram Inter 37: 2275-80.
Tavangarian, F., and Emadi, R., 2011c. Nanostructure effects on the bioactivity of for-
sterite bioceramic. Mater Lett 65: 740-3.
Tavangarian, F., and Emadi, R., 2011d. Synthesis and characterization of spinel fors-
terite nanocomposites. Ceram Inter 37: 2543-8.
Valerio, P., Pereira, M. M., Goes, A. M., et al., 2004. The effect of ionic products from
bioactive glass dissolution on osteoblast proliferation and collagen production.
Biomaterials 25: 2941-8.
Varlet, A., and Dauchy, P., 1983. Plaster of Paris pellets containing antibiotics in the
treatment of bone infection. New combinations of plaster with antibiotics. Rev
Chir Orthop Reparatrice Appar Mot 69: 239-44.
Wang, C., Xue, Y., Lin, K., et al., 2012. The enhancement of bone regeneration by a
combination of osteoconductivity and osteostimulation using beta-CaSiO3/
beta-Ca3(PO4)2 composite bioceramics. Acta Biomater 8: 350-60.
Search WWH ::




Custom Search