Biomedical Engineering Reference
In-Depth Information
Franco, J., Hunger, P., Launey, M. E., et al., 2010. Direct write assembly of calcium
phosphate scaffolds using a water-based hydrogel. Acta Biomater 6: 218-28.
Georgiade, N. G., Hanker, J., Levin, S., et al., 1993. The use of particulate hydroxyapa-
tite and plaster of Paris in aesthetic and reconstructive surgery. Aesthetic Plast
Surg 17: 85-92.
Gou, Z. G., and Chang, J., 2004. Synthesis and in vitro bioactivity of dicalcium silicate
powders. J Euro Ceram Soc 24: 93-99.
Gou, Z. R., Chang, J., and Zhai, W. Y., 2005. Preparation and characterization of novel
bioactive dicalcium silicate ceramics. J Euro Ceram Soc 25: 1507-14.
Gou, Z. G., Chang, J., Zhai, W. Y., et al., 2005. Study on the self-setting property and
the in vitro bioactivity of beta-Ca2SiO4. J Biomed Mater Res B-App Biomater 73B:
244-51.
Gou, Z. R., Chang, J., Gao, J. H., et al., 2004. In vitro bioactivity and dissolution of
Ca-2(SiO3)(OH)(2) and beta-Ca2SiO4 fibers. J Euro Ceram Soc 24: 3491-7.
Gough, J. E., Jones, J. R., and Hench, L. L., 2004. Nodule formation and mineralisa-
tion of human primary osteoblasts cultured on a porous bioactive glass scaffold.
Biomaterials 25: 2039-46.
Gough, J. E., Notingher, I., and Hench, L. L., 2004. Osteoblast attachment and mineral-
ized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J
Biomed Mater Res A 68: 640-50.
Gu, H., Guo, F., Zhou, X., et al., 2011. The stimulation of osteogenic differentiation of
human adipose-derived stem cells by ionic products from akermanite dissolu-
tion via activation of the ERK pathway. Biomaterials 32: 7023-33.
Hafezi-Ardakani, M., Moztarzadeh, F., Rabiee, M., et al., 2011. Synthesis and charac-
terization of nanocrystalline merwinite (Ca(3)Mg(SiO(4))(2)) via sol-gel method.
Ceram Inter 37: 175-80.
Hench, L. L., 1973. Ceramics, glasses, and composites in medicine. Med Instrum 7:
136-44.
Hench, L. L., 1991. Bioceramics: From concept to clinic. J Am Ceram Soc 74: 1487-1510.
Hench, L. L., 1998. Biomaterials: A forecast for the future. Biomaterials 19: 1419-23.
Hench, L. L., and Paschall, H. A., 1973. Direct chemical bond of bioactive glass-
ceramic materials to bone and muscle. J Biomed Mater Res 7: 25-42.
Hench, L. L., and Polak, J. M., 2002. Third-generation biomedical materials. Science
295: 1014-7.
Hench, L. L., and Thompson, I., 2010. Twenty-first century challenges for biomateri-
als. J R Soc Interface 7 Suppl 4: S379-91.
Hench, L. L., and Wilson, J., 1984. Surface-active biomaterials. Science 226: 630-6.
Hench, L. L., Xynos, I. D., and Polak, J. M., 2004. Bioactive glasses for in situ tissue
regeneration. J Biomater Sci Polym Ed 15: 543-62.
Hoppe, A., Guldal, N. S., and Boccaccini, A. R., 2011. A review of the biological
response to ionic dissolution products from bioactive glasses and glass-ceram-
ics. Biomaterials 32: 2757-74.
Huan, Z., and Chang, J., 2007a. Novel tricalcium silicate/monocalcium phosphate
monohydrate composite bone cement. J Biomed Mater Res B Appl Biomater 82:
352-9.
Huan, Z., and Chang, J., 2007b. Self-setting properties and in vitro bioactivity of cal-
cium sulfate hemihydrate-tricalcium silicate composite bone cements. Acta
Biomater 3: 952-60.
Search WWH ::




Custom Search