Biomedical Engineering Reference
In-Depth Information
Viswanath, B., and Ravishankar, N. 2008. Controlled synthesis of plate-shaped
hydroxyapatite and implications for the morphology of the apatite phase in
bone. Biomaterials 29: 4855-63.
Wakae, H., Takeuchi, A., Udoh, K., et al. 2008. Fabrication of macroporous carbonate
apatite foam by hydrothermal conversion of a-tricalcium phosphate in carbon-
ate solutions. J. Biomed. Mater. Res. A. 87: 957-63.
Wang, K. W., Zhu, Y. J., Chen, F., et al. 2011. Microwave-assisted synthesis of hydroxy-
apatite hollow microspheres in aqueous solution. Mater. Lett. 65: 2361-3.
Wang, K. W., Zhu, Y. J., Chen, X. Y., et al. 2010. Flower-like hierarchically nanostruc-
tured hydroxyapatite hollow spheres: Facile preparation and application in
anticancer drug cellular delivery. Chem. Asian J. 5: 2477-82.
Wang, L., Guan, X., Du, C., et al. 2007. Amelogenin promotes the formation of elon-
gated apatite microstructures in a controlled crystallization system. J. Phys.
Chem. C 111: 6398-404.
Wang, Y. J., Chen, J. D., Wei, K., et al. 2006. Surfactant-assisted synthesis of hydroxy-
apatite particles. Mater. Lett. 60: 3227-31.
Wang, Y. J., Lai, C., Wei, K.; Chen, X. F. et al. 2006. Investigations on the forma-
tion mechanism of hydroxyapatite synthesized by the solvothermal method.
Nanotechnology 17: 4405-12.
Wang, Y. S., Hassan, M. S., Gunawan, P., et al. 2009. Polyelectrolyte mediated forma-
tion of hydroxyapatite microspheres of controlled size and hierarchical struc-
ture. J. Colloid Interf. Sci. , 339: 69-77.
Wei, K., Lai, C., and Wang, Y. J. 2006. Solvothermal synthesis of calcium phosphate
nanowires under different pH condition. J. Macromol. Sci. A. 43: 1531-40.
Weiner, S., Arad, T., and Traub, W. 1991. Crystal organization in rat bone lamellae.
FEBS Lett. 285: 49-54.
Weiner, S., and Wagner, H. 1998. The material bone: Structure mechanical function
relations. Annu. Rev. Mater. Sci . 28: 271-98.
Wen, H. B., Moradian-Oldak, J., and Fincham, A.G. 2000. Dose dependent modulation
of octacalcium phosphate crystal habit by amelogenins. J. Dent. Res. 79: 1902-6.
Wong, M., Eulenberger, J., Schenk, R., et al. 1995. Effect of surface-topology on the
osseointegration of implant materials in trabecular bone. J. Biomed. Mater. Res.
29: 1567-75.
Wu, L., Dou, Y., Lin, K. 2011. Hierarchically structured nanocrystalline hydroxyapa-
tite assembled hollow fibers as a promising protein delivery system. Chem.
Commun. 47: 11674-6.
Wu, Y., Hench, L. L., Du, J., et al. 2004. Preparation of hydroxyapatite fibers by elec-
trospinning technique. J. Am. Ceram. Soc. 87: 1988-91.
Xiao, X., Liu, R., Qiu, C., et al. 2009. Biomimetic synthesis of micrometer spherical
hydroxyapatite with β-cyclodextrin as template. Mater. Sci. Eng. C 29: 785-90.
Xie, J., Blough, E. R., and Wang, C. H. 2012. Submicron bioactive glass tubes for bone
tissue engineering. Acta Biomater. 8: 811-9.
Yamaguchi, T., Sakai, S., and Kawakami, K. 2008. Application of silicate electrospun
nanofibers for cell culture. J. Sol-Gel Sci. Technol. 48: 350-5.
Yang, S., He, H., Wang, L., et al. 2011. Oriented crystallization of hydroxyapatite by
the biomimetic amelogenin nanospheres from self-assemblies of amphiphilic
dendrons. Chem. Commun. 47: 10100-2.
Ye, F., Guo H., and Zhang, H. 2008. Biomimetic synthesis of oriented hydroxyapatite
mediated by nonionic surfactants. Nanotechnology 19: 245605.
Search WWH ::




Custom Search