Biomedical Engineering Reference
In-Depth Information
Lin, K., Zhou, Y., Zhou, Y., et al. 2011. Biomimetic hydroxyapatite porous microspheres
with co-substituted essential trace elements: Surfactant-free hydrothermal syn-
thesis, enhanced degradation and drug release. J. Mater. Chem. 21:16558-65.
Liu, D., Troczynski, T., Tseng, W. 2001. Water-based sol-gel synthesis of hydroxyapa-
tite: Process development. Biomaterials 22: 1721-30.
Liu, X., Lin, K., and Chang, J. 2011. Modulation of hydroxyapatite crystals formed
from α-tricalcium phosphate by surfactant-free hydrothermal exchange.
CrystEngComm 13: 1959-65.
Liu, X., Lin, K., Qian, R., et al. 2012. Growth of highly oriented hydroxyapatite arrays
tuned by quercetin. Chem. Eur. J. 18: 5519-23.
Lu, W., Gao, P., Jian, W., et al. 2004. Perfect orientation ordered in-situ one-dimensional
self-assembly of Mn-doped PbSe nanocrystals. J. Am. Chem. Soc. 126: 14816-21.
Ma, M. G., and Zhu, J. F. 2009. Solvothermal synthesis and characterization of hierar-
chically nanostructured hydroxyapatite hollow spheres. Eur. J. Inorg. Chem. 36:
5522-6.
Ma, M. G., Zhu, Y. J., and Chang, J. 2008. Solvothermal preparation of hydroxyapatite
microtubes in water/N,N-dimethylformamide mixed solvents. Mater. Lett. 62:
1642-5.
Mandel, S., and Tas, A. C. 2010. Brushite (CaHPO 4 ·2H 2 O) to octacalcium phosphate
(Ca 8 (HPO 4 ) 2 (PO 4 ) 4 ·5H 2 O) transformation in DMEM solutions at 36.5°C. Mater.
Sci. Eng. C 30: 245-54.
Martins, M. A., Santos, C., Almeida, M. M., et al. 2008. Hydroxyapatite micro- and
nanoparticles: Nucleation and growth mechanisms in the presence of citrate
species. J. Colloid Interf. Sci . 318: 210-16.
Moradian-Oldak, J. 2001. Amelogenins: Assembly, processing and control of crystal
morphology. Matrix Biol. 20: 293-305.
Moradian-Oldak, J., Tan, J., and Fincham, A. G. 1998. Interaction of amelogenin with
hydroxyapatite crystals: An adherence effect through amelogenin self-associa-
tion. Biopolymers 46: 225-38.
Narayanaswamy, A., Xu, H. F., Pradhan, N., et al. 2006. Formation of nearly mono-
disperse In 2 O 3 nanodots and oriented-attached nanoflowers: Hydrolysis and
alcoholysis vs pyrolysis. J. Am. Chem. Soc. 128: 10210-9.
Nishikawa, H. 2003. Radical generation on hydroxyapatite by UV irradiation. Mater.
Lett . 58: 14-16.
Notodihardjo, F., Kakudo, N., Kushida, S., et al. 2012. Bone regeneration with BMP-2
and hydroxyapatite in critical-size calvarial defects in rats. J. Cranio. Maxill.
Surg. 40: 287-91.
Onuma, K., Kanzaki, N., and Ito, A., et al. 1998. Growth kinetics of the hydroxyapatite
(0001) face revealed by phase shift interferometry and atomic force microscopy.
J. Phys. Chem. B 102: 7833-8.
Pieters, I. Y., Van den Vreken, N. M. F., Declercq, H. A., et al. 2010. Carbonated apa-
tites obtained by the hydrolysis of monetite: Influence of carbonate content
on adhesion and proliferation of MC3T3-E1 osteoblastic cells. Acta Biomater. 6:
1561-8.
Posner, A. S., and Betts, F. 1975. Synthetic amorphous calcium-phosphate and its rela-
tion to bone-mineral structure. Acc. Chem. Res. 8: 273-81.
Ramanan, S. R., and Venkatesh, R. 2004. A study of hydroxyapatite fibers prepared
via sol-gel route. Mater. Lett. 58: 3320-3.
Search WWH ::




Custom Search