Biomedical Engineering Reference
In-Depth Information
Fowler, C., Li, M., Mann, S., et al. 2005. Influence of surfactant assembly on the forma-
tion of calcium phosphate materials—A model for dental enamel formation. J.
Mater. Chem. 15: 3317-25.
Franco, P. Q., João, C. F. C., Silva, J. C., et al. 2012. Electrospun hydroxyapatite fibers
from a simple sol-gel system. Mater. Lett. 67: 233-6.
Fujii, S., Okada, M., Sawa, H., et al. 2009. Hydroxyapatite nanoparticles as particulate
emulsifier: Fabrication of hydroxyapatite-coated biodegradable microspheres.
Langmuir 25: 9759-66.
Habelitz, S., Marshall, S. J., Marshall Jr., G. W., et al. 2001. Mechanical properties of
human dental enamel on the nanometre scale. Arch. Oral Biol. 46: 173-83.
Haders, D. J., Burukhin, A., Zlotnikov, E., et al. 2008. TEP/EDTA doubly regulated
hydrothermal crystallization of hydroxyapatite films on metal substrates. Chem.
Mater. 20: 7177-87.
He, Q., and Huang, Z. 2007. Controlled growth and kinetics of porous hydroxyapatite
spheres by a template-directed method. J. Cryst. Growth 300: 460-6.
He, Q., and Huang, Z. 2009. Controlled synthesis and morphological evolution of
dendritic porous microspheres of calcium phosphates. J. Porous Mater. 16: 683-9.
He, Q., Huang, Z., Liu, Y., et al. 2007. Template-directed one-step synthesis of flower-
like porous carbonated hydroxyapatite spheres. Mater. Lett . 61: 141-3.
He, W. H., Tao, J. H., Pan, H. H., et al. 2010. A size-controlled synthesis of hollow apa-
tite nanospheres at water-oil interfaces. Chem. Lett. 39: 674-5.
Hench, J. 1991. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74: 1487-510.
Hench, L., and Polak, J. 2002. Third-generation biomedical materials. Science 295:
1014-7.
Huang, S., Zhu, J., and Zhou, K. 2012. Effects of Eu 3+ ions on the morphology and
luminescence properties of hydroxyapatite nanoparticles synthesized by one-
step hydrothermal method. Mater. Res. Bull. 47: 24-28.
Iijima, M., Moriwaki, Y., Takagi, T., et al. 2001. Effects of bovine amelogenins on
the crystal morphology of octacalcium phosphate in a model system of tooth
enamel formation. J. Cryst. Growth 222: 615-26.
Iijima, M., Nelson, D. G. A., Pan, Y., et al. 1996. Fluoride analysis of apatite crystals
with a central planar OCP inclusion: Concerning the role of F ions on apatite/
OCP/apatite structure formation. Calcif. Tissue Int. 59: 377-84.
Ioku, K., Kawachi, G., and Sasaki, S. 2006. Hydrothermal preparation of tailored
hydroxyapatite. J. Mater. Sci. 41: 1341-4.
Ito, H., Oaki, Y., and Imai, H. 2008. Selective synthesis of various nanoscale morphol-
ogies of hydroxyapatite via an intermediate phase. Cryst. Growth Des. 8: 1055-9.
Kanchana, P., and Sekar, C. 2010. Influence of sodium fluoride on the synthesis of
hydroxyapatite by gel method. J. Cryst. Growth 312: 808-16.
Kang, Y., Yin, G., Liu, Y., et al. 2008. The precipitation of three Ca-P phase whiskers
from an acid solution through hydrolysis of urea. J. Ceram. Process. Res . 9: 162-6.
Kawasaki, T. 1991. Hydroxyapatite as a liquid chromatography packing. J. Chromatogr.
544: 147-84.
Kobayashi, T., Ono, S., Hirakura, S., et al. 2012. Morphological variation of hydroxyap-
atite grown in aqueous solution based on simulated body fluid. CrystEngComm
12: 1143-9.
Koutsoukos, P. G., and Nancollas, G. H. 1981. The morphology of hydroxyapatite
crystals grown in aqueous solution at 37°C. J. Cryst. Growth 55: 369-75.
Search WWH ::




Custom Search