Biomedical Engineering Reference
In-Depth Information
I. B. Leonor, A. Ito, K. Onuma, et al. 2002. In situ study of partially crystallized bio-
glass and hydroxylapatite in vitro bioactivity using atomic force microscopy.
Journal of Biomedical Materials Research 62(1): 82-88.
P. J. Li, C. Ohtsuki, T. Kokubo, et al. 1994. The role of hydrated silica, titania, and
alumina in inducing apatite on implants. Journal of Biomedical Materials Research
28(1): 7-15.
X. Li, J. L. Shi, Y. F. Zhu, et al. 2007. A template route to the preparation of mesoporous
amorphous calcium silicate with high in vitro bone-forming bioactivity. Journal
of Biomedical Materials Research Part B-Applied Biomaterials 83B(2): 431-439.
X. Li, H. Yasuda, and Y. Umakoshi. 2006. Bioactive ceramic composites sintered from
hydroxyapatite and silica at 1200 degrees C: Preparation, microstructures and
in vitro bone-like layer growth. Journal of Materials Science: Materials in Medicine
17(6): 573-581.
K. L. Lin, W. Y. Zhai, S. Y. Ni, et al. 2005. Study of the mechanical property and in vitro
biocompatibility of CaSiO 3 ceramics. Ceramics International 31(2): 323-326.
C. Lindahl, P. Borchardt, J. Lausmaa, et al. 2010. Studies of early growth mechanisms
of hydroxyapatite on single crystalline rutile: A model system for bioactive sur-
faces. Journal of Materials Science: Materials in Medicine 21: 2743-2749.
F. Lindberg, J. Heinrichs, F. Ericson, et al. 2008. Hydroxylapatite growth of single-
crystal rutile substrates. Biomaterials 29: 3317-3323.
C. M. Muller-Mai, C. Voigt, and U. Gross. 1990. Incorporation and degradation of
hydroxyapatite implants of different surface roughness and surface structure in
bone. Scanning Microscopy 4(3): 613-622; discussion 622-614.
M. K. Narbat, F. Orang, M. S. Hashtjin, and A. Goudarzi . 2006 . Fabrication of porous
hydroxyapatite-gelatin composite scaffolds for bone tissue engineering. Iran.
Biomedical Journal 10: 215-223.
M. D. O'Donnell, Y. Fredholm, A. de Rouffignac, et al. 2008. Structural analysis of a
series of strontium-substituted apatites. Acta Biomaterialia 4(5): 1455-1464.
C. Ohtsuki, Y. Aoki, T. Kokubo, et al. 1995. Transmission electron microscopic obser-
vation of glass-ceramic A-W and apatite layer formed on its surface in a simu-
lated body fluid. Journal of the Ceramic Society Japan 103(5): 449-454.
C. Ohtsuki, H. Kushitani, T. Kokubo, et al. 1991. Apatite formation on the surface of
ceravital-type glass-ceramic in the body. Journal of Biomedical Materials Research
25(11): 1363-1370.
M. Okazaki, J. Takahashi, H. Kimura, et al. 1982. Crystallinity, solubility, and disso-
lution rate behavior of fluoridated CO3 apatites. Journal of Biomedical Materials
Research 16(6): 851-860.
A. Oyane, K. Onuma, A. Ito, et al. 2003. Formation and growth of clusters in conven-
tional and new kinds of simulated body fluids. Journal of Biomedical Materials
Research. Part A 64(2): 339-348.
H. B. Pan, Z. Y. Li, W. M. Lam, et al. 2009. Solubility of strontium-substituted apatite
by solid titration. Acta Biomaterialia 5(5): 1678-1685.
J. D. Pasteris, B. Wopenka, and E. Valsami-Jones. 2008. Bone and tooth mineralization:
Why apatite? Elements 4: 97-104.
A. M. Pietak, J. W. Reid, M. J. Stott, et al. 2007. Silicon substitution in the calcium
phosphate bioceramics. Biomaterials 28(28): 4023-4032.
A. E. Porter, S. M. Best, and W. Bonfield. 2004. Ultrastructural comparison of hydroxy-
apatite and silicon-substituted hydroxyapatite for biomedical applications.
Journal of Biomedical Materials Research Part A 68A(1): 133-141.
Search WWH ::




Custom Search