Geology Reference
In-Depth Information
k z / t + r / z = 0 (2.134)
Let us expand Equations 2-132 to 2-134 using the chain rule of calculus, so that
k x / t +
r kx
k x / x + r ky
k y / x +
r kz
k z / x=- r x
(2.135)
k y / t +
r kx
k x / y + r ky
k y / y +
r kz
k z / y=- r y
(2.136)
r kx
r ky
r kz
k z / z=- r z
k z / t +
k x / z +
k y / z +
(2.137)
2.6.1 Wave irrotationality.
Recall our use of the phase function in Equations 2.84 and 2.85. In one
dimension, its motivation was furnished by wave solutions taking the form sin
(kx - t) or sin , where = - / t and k = / x (see Equations 2.8 and 2.9).
For slowly varying waves, we assume the existence of (x,y,z,t). Since
differentiation order can be interchanged, e.g., y (x,y,z,t)/ x = x (x,y,z,t)/ y,
we have, setting k x = x (x,y,z,t) and k y = y (x,y,z,t), the result k y / x = k x / y.
In general, the “wave irrotationality” conditions
k x / y = k y / x
(2.138)
k x / z = k z / x (2.139)
k y / z = k z / y (2.140)
apply, using terminology adopted from fluid mechanics. Therefore, Equations
2.135 to 2.137 can be rewritten in the form
k x / t +
r kx
k x / x + r ky
k x / y+
r kz
k x / z = -
r x
(2.141)
k y / t +
r kx
k y / x + r ky
k y / y+
r kz
k y / z = -
r y
(2.142)
k z / t +
r kx
k z / x + r ky
k z / y +
r kz
k z / z = -
r z
(2.143)
Since the k x (x,y,z,t) depends on four variables, namely, t, x, y, and z, its
total derivative is known from basic calculus as dk x = k x / t dt + k x / x dx +
k x / y dy + k x / z dz. Division by dt shows that
dk x /dt = k x / t + dx/dt k x / x + dy/dt k x / y + dz/dt k x / z
(2.144)
Similarly,
dk y /dt = k y / t + dx/dt k y / x + dy/dt k y / y + dz/dt k y / z
(2.145)
dk z /dt = k z / t + dx/dt k z / x + dy/dt k z / y + dz/dt k z / z
(2.146)
Search WWH ::




Custom Search