Biomedical Engineering Reference
In-Depth Information
97. Carvell, J. and K. Turner (2003) New applications and methods utilizing radio-frequency
impedance measurements for improving yeast management. Master Brewers Assoc Am
40:30-38
98. Vojinovic V, Cabral JMS, Fonseca LP (2006) Real-time bioprocess monitoring. Part I In
Situ Sens 114:1083-1091
99. O'Reilly BT, Hilton MD (2006) Improved fed-batch through maintenance of specific
productivity by indexing the glucose feed rate to capacitance-measured biomass in Pichia
pastoris, BIOT 443: Upstream Processing: microbial fermentation process development.
Advances in Process Engineering, San Francisco
100. Carvell J, Dowd J (2006) On-line measurements and control of viable cell density in cell
culture
manufacturing
processes
using
radio-frequency
impedance.
Cytotechnology
50:35-48
101. Günzler H, Gremlich H (2002) Spectroscopy in near- and far-infrared as well as related
methods. In: Anonymous IR spectroscopy: an introduction. Wilcy-VCH, Weinheim, p 309
102. Brown JM (1998) Molecular spectroscopy. Oxford University Press, New York
103. Schenk J, Dabros M, Marison IW, von Stockar U (2005) Simple and quick in situ calibration
of a FTIR instrument to control fed-batch fermentations of Pichia pastoris. J Biotechnol
118:S37-S37
104. Schenk J, Marison IW, von Stockar U (2007) Simplified Fourier-transform mid-infrared
spectroscopy
calibration
based
on
a
spectra
library
for
the
on-line
monitoring
of
bioprocesses. Analytica Chimica Acta 591:132-140
105. Schenk J, Viscasillas C, Marison IW, von Stockar U (2008) On-line monitoring of nine
different batch cultures of E. coli by mid-infrared spectroscopy, using a single spectra
library for calibration. J Biotechnol 134:93-102
106. Gabriele
R
(2005)
Near-infrared
spectroscopy
and
imaging:
basic
principles
and
pharmaceutical applications. Adv Drug Deliv Rev 57:1109-1143
107. Simpson MB (2005) Near-infrared spectroscopy for process analytical chemistry: theory,
technology and implementation. In: Bakeev KA (ed) Process analytical technology:
spectroscopic tools and implementation for the chemical and pharmaceutical industries.
Blackwell, Oxford, p 39
108. Singh R (2002) C. V. Raman and the discovery of the Raman effect. Phys Perspect
4:399-420
109. Das
RS,
Agrawal
YK
Raman
spectroscopy:
recent
advancements,
techniques
and
applications. Vib Spectrosc 57:163-176
110. Wartewig S, Nuebert RHH (2005) Pharmaceutical applications of mid-IR and Raman
spectroscopy. Adv Drug Deliver Rev 57:1144-1170
111. Chase B (1994) A new generation of Raman instrumentation. Appl Spectrosc 48:14A-19A
112. Massart DL, Vandeginste BGM, Deming BM, Michotte Y, Kaufman L (1988)
Chemometrics: a textbook. data handling in science and technology. Elsevier, Amsterdam
113. Brown, S. D., (2001) A Short Primer on Chemometrics for Spectroscopists. Educational
Article.
http://www.spectroscopynow.com/details/education/sepspec10349education/A-Short-
Primer-on-Chemometrics-for-Spectroscopists.html . Accessed 16 Nov 2012
114. Kramer R (1998) Chemometric techniques for quantitative analysis. Dekker, New York,
pp 216
115. Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-
trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772-777
116. Naes T, Isaksson T, Fearn T, Davies T (2002) A user-friendly guide to multivariate
calibration and classification. NIR, Chichester, pp 344
117. Gabrielsson J, Jonsson H, Airiau C, Schmidt B, Escott R, Trygg J (2006) OPLS
methodology for analysis of pre-processing effects on spectroscopic data. Chemom Intellig
Lab Syst 84:153-158
118. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least
squares procedures. Anal Chem 36:1627-1639
Search WWH ::




Custom Search