Biomedical Engineering Reference
In-Depth Information
different software platforms. Once it can be documented that the model is reliable,
it can be used for design of experiments, for process optimization and design, and
for investigating the usefulness of novel control strategies.
Acknowledgments The Danish Council for Strategic Research is gratefully acknowledged for
financial support in the frame of project number 09-065160.
References
1. US Food and Drug Administration (FDA) (2004) PAT guidance
2. Bhatia T,
Biegler LT (1996) Dynamic
optimization in the design
and scheduling of
multiproduct batch plants. Ind Eng Chem Res 35:2234-2246
3. Gernaey
KV,
Cervera-Padrell
AE,
Woodley
JM
(2012)
A
perspective
on
PSE
in
pharmaceutical process development and innovation. Comput Chem Eng 42:15-29
4. Nielsen J, Villadsen J (1992) Modeling of microbial kinetics. Chem Eng Sci 47:4225-4270
5. Teusink B, Smid EJ (2006) Modelling strategies for the industrial exploitation of lactic acid
bacteria. Nat Rev Microbiol 4:46-56
6. Gernaey KV, Eliasson Lantz A, Tufvesson P, Woodley JM, Sin G (2010) Application of
mechanistic models to fermentation and biocatalysis for next generation processes. Trends
Biotechnol 28:346-354
7. Villadsen J, Nielsen J, Lidén G (2011) Bioreaction engineering principles (3rd ed). Springer,
New York, 561 p, ISBN 978-1-4419-9687-9
8. Sin G, Woodley JM, Gernaey KV (2009) Application of modeling and simulation tools for
the evaluation of biocatalytic processes: a future perspective. Biotechnol Prog 25:1529-1538
9. Vasi´-Raˇki D, Findrik Z, Vrsalovi´ Preseˇki A (2011) Modelling as a tool of enzyme reaction
engineering for enzyme reactor development. Appl Microbiol Biotechnol 91:845-856
10. Sidoli FR, Mantalaris A, Asprey SP (2004) Modelling of mammalian cells and cell culture
processes. Cytotechnology 44:27-46
11. Sin G, Gernaey KV, Eliasson Lantz A (2009) Good modelling practice (GMoP) for PAT
applications: propagation of input uncertainty and sensitivity analysis. Biotechnol Prog
25:1043-1053
12. Sonnleitner B, Käppeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its
limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng
28:927-937
13. Ferrer-Miralles
N,
Domingo-Espín
J,
Corchero
JL,
Vázquez
E,
Villaverde
A
(2009)
Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 8:17
14. Sin G, Ödman P, Petersen N, Eliasson Lantz A, Gernaey KV (2008) Matrix notation for
efficient development of first-principles models within PAT applications: integrated modeling
of antibiotic production with Streptomyces coelicolor. Biotechnol Bioeng 101:153-171
15. Roels JA (1980) Application of macroscopic principles to microbial metabolism. Biotechnol
Bioeng 22:2457-2514
16. Esener AA, Roels J, Kossen NWF (1983) Theory and applications of unstructured growth
models: kinetic and energetic aspects. Biotechnol Bioeng 25:2803-2841
17. Holmberg A (1982) On the practical identifiability of microbial growth models incorporating
Michaelis-Menten type nonlinearities. Math Biosci 62:23-43
18. Brun R, Kuhni M, Siegrist H, Gujer W, Reichert P (2002) Practical identifiability of ASM2d
parameters—systematic selection and tuning of parameter subsets. Water Res 36:4113-4127
19. Carlquist M, Lencastre Fernandes R, Helmark S, Heins A-L, Lundin L, Sørensen SJ,
Gernaey KV, Eliasson Lantz A (2012) Physiological heterogeneities in microbial populations
and implications for physical stress tolerance. Microb Cell Factories 11:94
Search WWH ::




Custom Search