Biomedical Engineering Reference
In-Depth Information
Gan, L.B. and Ben-Nissan, B. 1997b. Finite element analysis and the behaviour of sol-gel derived thin
films under ultra-microhardness indentation. J. Aust. Ceram. Soc. 32:51-55.
Gao, J., Xiao, H., Li, Z., and Du, H. 1997. Preparation of nanosized silicon nitride powders by ammonic
sol-gel process. Trans. Nonferrous Met. Soc. China 7:21-24.
Geffcken, W. and Berger, E. 1939. Änderung des Reflexionsvermogens Optischer Gläser. German
Patent 736411.
Green, D.D. 2001. Characterisation of hydroxyapatite powders produced by an efficient alkoxide
sol-gel process. MSc thesis, University of Technology, Sydney, Australia.
Green, D.W., Howard, D., Yang, X.B., Kelly, M., and Oreffo, R.O.C. 2003. Natural marine sponge fibre
skeleton: A biomimetic scaffold for human osteoprogenitor cell attachment, growth and differ-
entiation. Tissue Eng. 9, 6:1159-1166.
Green, D.W. and Ben-Nissan, B. 2008. Bio-inspired engineering of human tissue scaffolding in regen-
erative medicine, 364-388. In Biomaterials in Asia. Tateishi, T. (ed). Singapore: World Scientific
Publishing Co. Pte. Ltd.
Gross, K.A., Chai, C.S., Kannangara, G.S.K., Ben-Nissan, B. and Hanley, L. 1998. Thin hydroxyapatite
coatings via sol-gel synthesis. J. Mater. Sci.: Mater. Med. 9(12):839-843.
Gottardi, V., Guglielmi, M., Bertoluzza, A., Fagnano, C., and Morelli, M.A. 1984. Further investiga-
tions on Raman spectra of silica gel evolving toward glass. J. Noncryst. Solids 63:71-80.
Han, Y.C., Li, S.P., Wang, X.Y., and Chen, X.M. 2004. Synthesis and sintering of nanocrystal-
line hydroxyapatite powders by citric acid sol-gel combustion method. Mater. Res. Bull.
39:25-32.
Harris, M.T., Byers, C.H., and Brunson, R.R. 1988. A study of solvent effects on the synthesis of
pure component and composite ceramic powders by metal alkoxide hydrolysis, 287-292. In
Better Ceramics Through Chemistry , 3rd Edition. Brinker, C.J., Clark, D.E., and Ulrich D.R. (eds.).
Pittsburgh, PA: Materials Research Society.
Harris, E.E. and Malyango, A.A. 2005. Evolutionary explanations in medical and health profession
courses: Are you answering your students' 'why' questions? BMC Med. Educ. 5:16.
Harry, E., Rouzaud, A., Ignat, M., and Juliet, P. 1998. Mechanical properties of W and W(C) thin films:
Young's modulus, fracture toughness and adhesion. Thin Solid Films 332:195-201.
Hasegawa, I., Nakamura, T., Motojima, S., and Kajiwara, M. 1997. Synthesis of silicon carbide fibers
by sol-gel processing. J. Sol-Gel Sci. Technol. 8:577-579.
He, L.H., Standard, O.C., Huang, T.T.Y., Latella, B.A., and Swain, M.V. 2008. Mechanical behaviour of
porous hydroxyapatite. Acta Biomater . 4:577-586.
Heimke, G. and Griss, P. 1980. Ceramic implant materials. Med. Biol. Eng. Comput. 18:503-510.
Hench, L.L. 1991. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74(7):1487-1510.
Hench, L.L. and West, J.K. 1990. The sol-gel process. Chem. Rev. 90:33-72.
Hofinger, I., Oechsner, M., Bahr, H.A., and Swain, M.V. 1998. Modified four-point bending specimen
for determining the interfacial fracture energy for thin, brittle layers. Int. J. Fract. 92:213-220.
Hofmann, I., Mülloer, L., Greil, P., and Müller, F.A. 2006. Calcium phosphate nucleation on cellulose
fabrics. Surf. Coat. Technol. 201:2392-2398.
Hollister, S.J. 2005. Porous scaffold design for tissue engineering. Nat. Mater. 4:518-524.
Hollister, S.J. and Lin, S.Y. 2007. Computational design of tissue engineering scaffolds. Comput.
Methods Appl. Mech. Eng. 196:2991-2998.
Hsieh, M.F., Perng, L.H., and Chin, T.S. 2002. Hydroxyapatite coating on Ti6Al4V alloy using a sol-
gel derived precursor. Mater. Chem. Phys. 74(3):245-250.
Hu, M. S. and Evans, A. G. 1989. The cracking and decohesion of thin films on ductile substrates. Acta
Metall. 37(3):917-925.
Hu, J., Russell, J.J., Ben-Nissan, B., and Vago, R. 2001. Production and analysis of hydroxyapatite
from Australian corals via hydrothermal process. J. Mater. Sci. Lett. 20:85-87.
Hulbert, S.F., Young, F.A., Mathews, R.S., Klawitter, J.J., Talbert, C.D., and Stelling, F.H. 1970.
Potential of ceramic materials as permanently implantable skeletal prostheses. J. Biomed. Mater.
Res. 4(3):433-456.
Search WWH ::




Custom Search