Biomedical Engineering Reference
In-Depth Information
[32] Venkatesan, T., Green, S.M. 1996. Pulsed laser deposition: thin films in a flash. The American
Institute of Physics. Ind. Physicists Mag. , 22-24.
[33] Eason, R. 2007. Pulsed laser deposition of thin films. In: Eason, R. (ed.), Applications-Led Growth
of Functional Materials . John Wiley & Sons, Hoboken, New Jersey, USA.
[34] Joanni, E., Ferro, M.C., Mardare, C.C., Mardare, A.I., Fernandes, J.R.A., de Almeida, S.C. 2004.
Pulsed laser deposition of SiO 2 -P 2 O 5 -CaO-MgO glass coatings on titanium substrates. Mater.
Res . 7(3).
[35] Berbecarua, C.,Alexandrua, H.V., Ianculescub,A., Popescuc,A., Socolc, G., Simac, F., Mihailescuc,
I. 2009. Bioglass thin films for biomimetic implants. Appl. Surf. Sci . 255(10), 5476-5479.
[36] Lusquiños, F., De Carlos, A., Pou, J., Arias, J.L., Boutinguiza, M., León, B., Pérez-Amor, M.,
Driessens, F.C.M., Hing, K., Gibson, I., Best, S., Bonfield, W. 2003. Calcium phosphate coatings
obtained by Nd:YAG laser cladding: physicochemical and biologic properties. J. Biomed. Mater.
Res. A 64A(4), 630-637.
[37] Comesañaa, R., Quinteroa, F., Lusquiñosa, F., Pascualb, M.J., Boutinguizaa, M., Duránb, A.,
Pou, J. 2010. Laser cladding of bioactive glass coatings. Acta Biomater . 6(3), 953-961.
[38] Moritz, N., Vedel, E., Ylanen, H., Jokinen, M., Hupa, M., Yli-Urpo, A. 2004. Characterisation of
bioactive glass coatings on titanium substrates produced using a CO 2 laser. J. Mater. Sci. Mater.
Med . 15(7), 787-794.
[39] Advincula, M.C., Petersen, D., Rahemtulla, F., Advincula, R., Lemons, J.E. 2007. surface analy-
sis and biocorrosion properties of nanostructured surface sol-gel coatings on Ti6Al4V titanium
alloy implants. J. Biomed. Mater. Res. Part B: Appl. Biomater . 80B, 107-120.
[40] Radice, S., Kern, P., Bürki, G., Michler, J., Texto, M. 2007. Electrophoretic deposition of zir-
conia-Bioglass ® composite coatings for biomedical implants. J. Biomed. Mater. Res. A 82A(2),
436-444.
[41] Salih, V. 2009. Biodegradable scaffolds for tissue engineering. In: Di Silvio, L. (ed.), Cellular
Response to Biomaterials , 185-211. Woodhead Publishing in Materials, CRC Press, Cambridge.
[42] Hutmacher, D.W., Schantz, J.T., Lam, C.X.F., Tan, K.C., Lim, T.C. 2007. State of the art and future
directions of scaffold-based bone engineering from a biomaterials perspective. J. Tissue Eng.
Regen. Med . 1(4), 245-260.
[43] Tuzlakoglu, K., Reis, R.L. 2008. Biodegradable polymeric fibre structures in tissue engineering.
Tissue Eng. Part B Rev 15, 17-25.
[44] Misra, S.K., Philip, S.E., Chrzanowski, W., Nazhat, S.N., Roy, I., Knowles, J.C., Salih, V.,
Boccaccini, A.R. 2008. Incorporation of vitamin E in poly(3hydroxybutyrate)/bioglass compos-
ite films: effect on surface properties and cell attachment. J. R. Soc, Interface 2, 1-9.
[45] Stamboulis, L., Hench, L., Boccaccini, A.R. 2002. Mechanical properties of biodegradable poly-
mer sutures coated with bioactive glass. J. Mater. Sci.: Mater. Med . 13(9).
[46] Ross, E.A., Batich, C.D., Clapp, W.L., Sallustio, J.E., Lee, N.C. 2003. Tissue adhesion to bioactive
glass-coated silicone tubing in a rat model of peritoneal dialysis catheters and catheter tunnels.
Kidney Int . 63, 702-708.
[47] Baino, F., Verné, E., Vitale-Brovarone, C. 2009. Feasibility, tailoring and properties of poly-
urethane/bioactive glass composite scaffolds for tissue engineering. Feasibility, tailoring and
properties of polyurethane/bioactive glass composite scaffolds for tissue engineering. J. Mater.
Sci. Mater. Med . 20(11) 2189-2195.
[48] Zhang, K., Wang, Y.B., Hillmyer, M.A., Francis, L.F. 2004. Processing and properties of porous
poly(Image-lactide)/bioactive glass composites. Biomaterials 25(13), 2489-2500.
[49] Roether, J.A., Gough, J.E., Boccaccini, A.R., Hench, L.L., Maquetand, V., Jérôme, R. 2002. Novel
bioresorbable and bioactive composites based on bioactive glass and polylactide foams for
bone tissue engineering. J. Mater. Sci. Mater. Med . 13(12), 1207-1214.
[50] Pratten, J., Nazhat, S.N., Blaker, J.J., Boccaccini, A.R. 2004. In vitro attachment of Staphylococcus
epidermidis to surgical sutures with and without Ag-containing bioactive glass coating. J.
Biomater. Appl . 19(1), 47-57.
[51] Lutolf, M.P. 2009. Integration column: artificial ECM: expanding the cell biology toolbox in 3D.
Integr. Biol . 1, 235-241.
Search WWH ::




Custom Search