Biomedical Engineering Reference
In-Depth Information
59. Darr, J.A., Guo, Z.X., Raman, V., Bououdina, M., and Rehman, I.U. 2004. Metal organic chemical
vapour deposition (MOCVD) of bone mineral like carbonated hydroxyapatite coatings. Chem
Commun 6: 696-697.
60. Cao, Y., Weng, J., Chen, J., Feng, J., Yang, Z., and Zhang, X. 1996. Water vapour-treated hydroxy-
apatite coatings after plasma spraying and their characteristics. Biomaterials 17: 419-424.
61. Yang, C.Y., Lin, R.M., Wang, B.C., et al. 1997. In vitro and in vivo mechanical evaluations of
plasma-sprayed hydroxyapatite coatings on titanium implants: The effect of coating character-
istics. J Biomed Mater Res 37: 335-345.
62. Kweh, S.W.K., Khor, K.A., and Cheang, P. 2002. An in vitro investigation of plasma sprayed
hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock. Biomaterials 23:
775-785.
63. Silva, P.L., Santos, J.D., Monteiro, F.J., and Knowles, J.C. 1998. Adhesion and microstructural
characterization of plasma-sprayed hydroxyapatite/glass ceramic coatings onto Ti-6Al-4V
substrates. Surf Coat Technol 102: 191-196.
64. Filiaggi, M.J., Coombs, N.A., and Pilliar, R.M. 1991. Characterization of the interface in the
plasma-sprayed HA coating/Ti-6Al-4V implant system. J Biomed Mater Res 25: 1211-1229.
65. Narushima, T., Ueda, K., Goto, T., et al. 2008. Fabrication and evaluation of calcium phosphate
coating films on blast-treated Ti-6Al-4V alloy substrate. J Jpn Soc Powder Powder Metall 55:
318-324.
66. Ducheyne, P. and Qiu, Q. 1999. Bioactive ceramics: The effect of surface reactivity on bone for-
mation and bone cell function. Biomaterials 20: 2287-2303.
67. Kokubo, T., and Takadama, H. 2006. How useful is SBF in predicting in vivo bone bioactivity?
Biomaterials 27: 2907-2915.
68. Sato, M., Tu, R., Goto, T., Ueda, K., and Narushima, T. 2007. Hydroxyapatite formation on
MOCVD-CaTiO 3 coated Ti. Key Eng Mater 352: 301-304.
69. Weng, J., Liu, Q., Wolke, J.G.C., Zhang, X., and de Groot, K. 1997. Formation and characteris-
tics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid.
Biomaterials 18: 1027-1035.
70. Wen, C.E., Xu, W., Hu, W.Y., and Hodgson, P.D. 2007. Hydroxyapatite/titania sol-gel coatings
on titanium-zirconium alloy for biomedical applications. Acta Biomater 3: 403-410.
71. Sugino, A., Tsuru, K., Hayakawa, S., et al. 2009. Induced deposition of bone-like hydroxyapatite
on thermally oxidized titanium substrates using a spatial gap in a solution that mimics a body
fluid. J Ceram Soc Jpn 117: 515-520.
72. Tanase, T., Akiyama, J., Iwai, K., and Asai, S. 2007. Characterization of surface biocompatibility
of crystallographically aligned hydroxyapatite fabricated using magnetic field. Mater Trans 48:
2855-2860.
73. Wolke, J.G.C., de Groot, K., and Jansen, J.A. 1998. Dissolution and adhesion behavior of radio-
frequency magnetron-sputtered Ca-P coatings. J Mater Sci 33: 3371-3376.
74. Verestiuc, L., Morosanu, C., Bercu, M., Pasuk, I., and Mihailescu, I.N. 2004. Chemical growth of
calcium phosphate layers on magnetron sputtered HA films. J Cryst Growth 264: 483-491.
75. van der Wal, E., Wolke, J.G.C., Jansen, J.A., and Vredenberg, A.M. 2005. Initial reactivity of rf
magnetron sputtered calcium phosphate thin films in simulated body fluids. Appl Surf Sci 246:
183-192.
76. Weng, J., Liu, Q., Wolke, J.G.C., Zhang, D., and de Groot, K. 1997. The role of amorphous phase
in nucleating bone-like apatite on plasma-sprayed hydroxyapatite coatings in simulated body
fluid. J Mater Sci Lett 16: 335-337.
77. Ogata, K., Imazato, S., Ehara, A., et al. 2005. Comparison of osteoblast responses to hydroxy-
apatite and hydroxyapatite/soluble calcium phosphate composites. J Biomed Mater Res 72A:
127-135.
78. Zhao, B.H., Lee, I.-S., Bai, W., Cui, F.Z., and Feng, H.L. 2005. Improvement of fibroblast adher-
ence to titanium surface by calcium phosphate coating formed with IBAD. Surf Coat Technol
193: 366-371.
Search WWH ::




Custom Search