Biomedical Engineering Reference
In-Depth Information
Fujishima, A., Zhang, X.T., and Tryk, D.A. 2008. TiO 2 photocatalysis and related surface phenomena.
Surf. Sci. Rep. 63:515-582.
Gong, D., Grimes, C.A., and Varghese, O.K., et al. 2001. Titanium oxide nanotube arrays prepared by
anodic oxidation. J. Mater. Res. 16:3331-3334.
Grimes, C.A. and Mor, C.K. 2009. TiO 2 Nanotube Arrays. Synthesis, Properties, and Applications. New
York: Springer Science.
He, J.H., Ichinose, I., Fujikawa, S., Kunitake, T., and Nakao, A. 2002. A general, efficient method of
incorporation of metal ions into ultrathin TiO 2 films. Chem. Mater. 14:3493-3500.
Huang, H.H., Pan, S.J., Lai, Y.J., Lee, T.H., Chen, C.C., and Lu, F.H. 2004. Osteoblast-like cell initial
adhesion onto a network-structured titanium oxide layer. Scr. Mater. 51:1017-1021.
Hugenschmidt, M.B., Gameble, L., and Campbell, C.T. 1994. The interaction of H 2 TiO2 with a TiO 2 (110)
surface. Surf. Sci . 302:329-340.
Hwang, B.J. and Hwang, J.R. 1993. Kinetic-model of anodic-oxidation of titanium in sulfuric acid. J.
Appl. Electrochem. 23:1056-1062.
Ichinose, I., Senzu., H., and Kunitake, T. 1996. Stepwise adsorption of metal alkoxides on hydrolyzed
surfaces: A surface sol-gel process. Chem. Lett. 25:831-832.
Jaroenworaluck, A., Regonini, D., Bowen, C.R., Stevens, R., and Macro, D.A. 2007. Micro and nano-
structure of TiO 2 anodised films prepared in a fluorine-containing electrolyte. J. Mater. Sci.
42:6729-6734.
Julia, K., Lenka, M., Jan, M.M., Peter, G., Patrik, S., and Frank, A.M. 2008. Time-dependent growth of
biomimetic apatite on anodic TiO 2 nanotubes. Electrochim. Acta 53:6995-7003.
Jung, J.H., Kobayashi, H., van Bommel, K.J.C., Shinkai, S., and Shimizu, T. 2002. Creation of novel
helical ribbon and double-layered nanotube TiO 2 structures using an organogel template. Chem.
Mater. 14:1445-1447.
Kaminski, R.C., Pulcinelli, S.H., Craievich, A.F., and Santilli, C.V. 2005. Nanocrystalline anatase thin
films prepared from redispersible sol-gel powders. J. Eur. Ceram. Soc. 25:2175-2180.
Karlsson, M., Palsgard, E., Wilshaw, P.R., and Di Silvio, L. 2003. Initial in vitro interaction of osteo-
blasts with nano-porous alumina. Biomaterials 24:3039-3046.
Khang, D., Lu, J., Yao, C., Haberstroh, K.M., and Webster, T.J. 2008a. The role of nanometer and sub-
micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29:970-983.
Khang, D., Park, G.E. and Webster, T.J. 2008b. Enhanced chondrocyte densities on carbon nanotube
composites: The combined role of nanosurface roughness and electrical stimulation. J. Biomed.
Mater. Res. A 86A:253-260.
Kobayashi, S., Hamasaki, N., Suzuki, M., Kimura, M., Shirai, H., and Hanabusa, K. 2002. Preparation
of helical transition-metal oxide tubes using organogelators as structure-directing agents. J.
Am. Chem. Soc. 124:6550-6551.
Larbot, A., Fabre, J.P., Guizard, C., and Cot, L. 1988. Inorganic membranes obtained by sol-gel tech-
niques. J. Membr. Sci. 39:203-212.
Lee, S., Takai, M., Kim, H., and Ishihara, K. 2009. Preparation of nano-structured titanium oxide film
for biosensor substrate by wet corrosion process. Curr. Appl. Phys. 9:e266-e269.
Li, L.H., Kong, Y.M., and Kim, H.W., et al. 2004. Improved biological performance of Ti implants due
to surface modification by micro-arc oxidation. Biomaterials 25:2867-2875.
Liu, K.S., Zhang, M.L., Shi, K.Y., Zhou, W., and Fu, H.G. 2006. Uniform TiO 2 thin films with anatase nano-
crystallites synthesized through evaporation-induced assembly. J. Non-Cryst. Solids 352:2284-2287.
Liu, X.Y., Chu, P.K., and Ding, C.X. 2004. Surface modification of titanium, titanium alloys, and
related materials for biomedical applications. Mater. Sci. Eng. R 47:49-121.
Liu, X.Y. and Ding, C.X. 2002. Plasma sprayed wollastonite/TiO 2 composite coatings on titanium
alloys. Biomaterials 23:4065-4077.
Liu, X.Y., Zhao, X.B., Fu, R.K.Y., Ho, J.P.Y., Ding, C.X., and Chu, P.K. 2005. Plasma-treated nanostruc-
tured TiO 2 surface supporting biomimetic growth of apatite. Biomaterials 26:6143-6150.
Liu, Z., Zhang, X., and Nishimoto, S., et al. 2008a. Highly ordered TiO 2 nanotube arrays with control-
lable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112:253-259.
Search WWH ::




Custom Search