Biomedical Engineering Reference
In-Depth Information
154. M. Wei, A.J. Ruys, M.V. Swain, B.K. Milthorpe, and C.C. Sorrell, Hydroxyapatite-Coated Metals:
Interfacial Reactions during Sintering, J. Mater. Sci. Mater. Med. , 16 [2] 101-106 (2005).
155. H. Ji and P.M. Marquis, Effect of Heat Treatment on the Microstructure of Plasma-Sprayed
Hydroxyapatite Coating, Biomater. , 14 [1] 64-68 (1993).
156. P. Ducheyne and K.E. Healy, The Effect of Plasma-Sprayed Calcium Phosphate Ceramic
Coatings on the Metal Ion Release from Porous Titanium and Cobalt-Chromium Alloys, J.
Biomed. Mater. Res. , 22 [12] 1137-63 (1988).
157. P. Ducheyne, P.D. Bianco, and C. Kim, Bone Tissue Growth Enhancement by Calcium Phosphate
Coatings on Porous Titanium Alloys: The Effect of Shielding Metal Dissolution Product,
Biomater. , 13 [9] 617-24 (1992).
158. A.J. Ruys, M. Wei, B.K. Milthorpe, A. Brandwood, and C.C. Sorrell, Hydrothermal Sintering of
ZrO 2 and Al 2 O 3 Fibre-Reinforced Hydroxyapatite, J. Aust. Ceram. Soc. , 29 [1/2] 51-56 (1993).
159. A.J. Ruys, K.A. Zeigler, B.K. Milthorpe, and C.C. Sorrell, Hydroxyapatite-Ceramic/Metal
Composites: Quantification of Additive-Induced Dehydration, pp. 591-97 in Ceramics: Adding
the Value . Edited by M.J. Bannister. CSIRO, Melbourne, 1992.
160. J.B. Park and R.S. Lakes, Biomaterials: An Introduction, 2nd Edition. Plenum Press, New York,
NY, 1992.
161. Hugh Baker, Editor, ASM Handbook, Volume 3: Alloy Phase Diagrams . ASM International,
Materials Park, OH, 1992.
162. L.S. Moroz and I.N. Razuvaeva, Effect of β Stabilizers on the Mechanical Properties of Titanium
Alloys with an α Structure, Metall. Termich. Obrab. Metall. , [3] 34-39 (1971).
163. L.M. Boulton, P.J. Gregson, M. Tuke, and T. Baldwin, Adhesively Bonded Hydroxyapatite
Coating, Mater. Lett. , 12 [1-2] 1-6 (1991).
164. C.S. Kim and P. Ducheyne, Compositional Variations in the Surface and Interface of Calcium
Phosphate Ceramic Coatings on Ti and Ti-6Al-4V due to Sintering and Immersion, Biomater .,
12 [5] 461-69 (1991).
165. A. Ravaglioli and A. Krajewski, Bioceramics: Materials, Properties, Applications . Chapman & Hall,
London, 1992.
166. J. Breme, Y. Zhou, and L. Groh, Development of a Titanium Alloy Suitable for an Optimised
Coating with Hydroxyapatite, Biomater. , 16 [3] 239-44 (1995).
167. X.F. Xiao, R.F. Liu, and X.L. Tang, Electrophoretic Deposition of Silicon Substituted Hydroxyapatite
Coatings from n -Butanol-Chloroform Mixture J. Mater. Sci. Mater. Med. , 19 [1] 175-82 (2008).
168. Z.C. Wang, F. Chen, L.M. Huang, and C.J. Lin, Electrophoretic Deposition and Characterization
of Nano-Sized Hydroxyapatite Particles, J. Mater. Sci. , 40 [18] 4955-57 (2005).
169. M. Wei, A.J. Ruys, M.V. Swain, S.H. Kim, B.K. Milthorpe, and C.C. Sorrell, Interfacial Bond
Strength of Electrophoretically Deposited Hydroxyapatite Coatings on Metals, J. Mater. Sci.
Mater. Med., 10 [7] 401-409 (1999).
170. C. Kaya, I. Singh, and A.R. Boccaccini, Multi-Walled Carbon Nanotube-Reinforced Hydro-
xyapatite Layers on Ti6Al4V Medical Implants by Electrophoretic Deposition (EPD), Adv. Eng.
Mater. , 10 [1] 131-38 (2008).
171. M. Roy, A. Bandyopadhyay, and S. Bose, Laser Surface Modification of Electrophoretically
Deposited Hydroxyapatite Coating on Titanium, J. Am. Ceram. Soc. , 91 [11] 3517-21 (2008).
172. I. Zhitomirsky and X. Pang, Electrodeposition of Composite Hydroxyapatite-Chitosan Films,
Mater. Chem. Phys. , 94 [2-3] 245-51 (2005).
173. X. Pang and L. Zhitomirsky, Fabrication of Chitosan-Hydroxyapatite Coatings for Biomedical
Applications, ECS Trans. , 3 [26] 15-22 (2007).
174. M. Freilich, C.M. Patel, M. Wei, D. Shafer, P. Schleier, P. Hortschansky, R. Kompali, and L. Kuhn,
Growth of New Bone Guided by Implants in a Murine Calvarial Model, Bone , 43 [4] 781-88
(2008).
Search WWH ::




Custom Search