Biology Reference
In-Depth Information
Quilot B, Kervella J, Genard M, Lescourret F, 2005.
Analysing the genetic control of peach fruit quality
through an ecophysiological model combined with a
QTL approach. Journal of experimental botany 56, 3083-
3092. http://dx.doi.org/10.1093/jxb/eri305
Raboin L-M, Pauquet J, Butterfield M, D'Hont A, Glasz-
mann J-C, 2008. Analysis of genome-wide linkage dise-
quilibrium in the highly polyploid sugarcane. Theoretical
and Applied Genetics 116, 701-714. http://dx.doi.org/
10.1007/s00122-007-0703-1
Raboin L, Oliveira K, Lecunff L, Telismart H, Roques D, But-
terfield M, Hoarau J, D'Hont A, 2006. Genetic mapping
in sugarcane, a high polyploid, using bi-parental progeny:
Identification of a gene controlling stalk colour and a new
rust resistance gene. Theoretical and Applied Genetics
112, 1382-1391. http://dx.doi.org/10.1007/s00122-006-
0240-3
Raboin LM, 2005. Genetique de la resistance au charbon
de la canne a sucre caus´epar Ustilago scitaminea :Car-
acterisation de la diversit´egenetique du pathogene, car-
tographie de QTL dans un croisement bi-parental et etude
d'associations dans une population de cultivars mod-
ernes. ENSAM, Montpellier, France, p. 119.
Rafalski A, Morgante M, 2004. Corn and humans: Recom-
bination and linkage disequilibrium in two genomes
of
Souza GM, Berges H, Bocs S, Casu R, D'Hont A, Ferreira
JE, Henry R, Ming R, Potier B, Van Sluys MA, 2011. The
sugarcane genome challenge: Strategies for sequencing a
highly complex genome. Tropical Plant Biology 4, 145-
156. http://dx.doi.org/10.1007/s12042-011-9079-0
Tew TL, Cobill RM, 2008. Genetic Improvement of Sugar-
cane (Saccharum spp.) as an energy crop. In: Vermerris W
(ed) Genetic improvement of bioenergy crops .NewYork:
Springer, pp. 273-294. http://dx.doi.org/10.1007/978-0-
387-70805-8_9
Vettore AL, Da Silva FR, Kemper EL, Souza GM, Da Silva
AM, Ferro MIT, Henrique-Silva F, Giglioti AA, Lemos
MVF, Coutinho LL, 2003. Analysis and functional anno-
tation of an expressed sequence tag collection for trop-
ical crop sugarcane. Genome Research 13, 2725-2735.
http://dx.doi.org/10.1101/gr.1532103
Waclawovsky AJ, Sato PM, Lembke CG, Moore PH,
Souza GM, 2010. Sugarcane for bioenergy produc-
tion: An assessment of yield and regulation of sucrose
content. Plant Biotechnology Journal 8, 263-276.
http://dx.doi.org/10.1111/j.1467-7652.2009.00491.x
Walker
DA,
2009.
Biofuels,
facts,
fantasy,
and
feasi-
bility.
Journal
of
Applied
Phycology
21,
509-517.
http://dx.doi.org/10.1007/s10811-009-9446-5
Wang J, Roe B, Macmil S, Yu Q, Murray J, Tang H,
Chen C, Najar F, Wiley G, Bowers J, Van Sluys M-
A, Rokhsar D, Hudson M, Moose S, Paterson A, Ming
R, 2010. Microcollinearity between autopolyploid sugar-
cane and diploid sorghum genomes. BMC Genomics 11,
261. http://www.biomedcentral.com/1471-2164/11/261
Wei X, Jackson P, McIntyre C, Aitken K, Croft B, 2006.
Associations between DNA markers and resistance to
diseases in sugarcane and effects of population substruc-
ture. Theoretical and Applied Genetics 114, 155-164.
http://dx.doi.org/10.1007/s00122-006-0418-8
Wei X, Jackson PA, Hermann S, Kilian A, Heller-Uszynska
K, Deomano E, 2010. Simultaneously accounting for
population structure, genotype by environment inter-
action,
similar
size.
Trends
in
Genetics
20,
103-111.
http://dx.doi.org/10.1016/j.tig.2003.12.002
Reffay N, Jackson PA, Aitken KS, Hoarau JY, D'Hont
A, Besse P, McIntyre CL, 2005. Characterisation of
genome regions incorporated from an important wild
relative into Australian sugarcane. Molecular Breed-
ing 15, 367-381. http://dx.doi.org/10.1007/s11032-004-
7981-y
Reymond M, Muller B, Leonardi A, Charcosset A, Tardieu
F, 2003. Combining quantitative trait loci analysis and
an ecophysiological model to analyze the genetic vari-
ability of the responses of maize leaf growth to temper-
ature and water deficit. Plant Physiology 131, 664-675.
http://dx.doi.org/10.1104/pp.013839
Roach B, 1989. Origin and improvement of the genetic base
of sugarcane. Proceeding of Australian Society of Sugar
Cane Technologists 11, 34-47.
Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM,
Chen H, Van Sluys MA, D'Hont A, 2003. Genomic
distribution and characterization of EST-derived resis-
tance gene analogs (RGAs) in sugarcane. Molecular
Genetics and Genomics 269, 406-419. http://dx.doi.org/
10.1007/s00438-003-0849-8
Sills GR, Bridges W, Al-Janabi SM, Sobral BWS, 1995.
Genetic analysis of agronomic traits in a cross between
sugarcane ( Saccharum officinarum L.) and its presumed
progenitor ( S. robustum Brandes & Jesw. ex Grassl).
Molecular
and
spatial
variation
in
marker-trait
associ-
ations
in
sugarcane.
Genome
53,
973-981.
http://
dx.doi.org/10.1139/G10-050
Wong C, Bernardo R, 2008. Genomewide selection in
oil palm: Increasing selection gain per unit time and
cost with small populations. Theoretical and Applied
Genetics
116,
815-824.
http://dx.doi.org/10.1007/
s00122-008-0715-5
Wu K, Burnquist W, Sorrells M, Tew T, Moore P,
Tanksley S, 1992. The detection and estimation of link-
age in polyploids using single-dose restriction frag-
ments. Theoretical and Applied Genetics 83, 294-300.
http://dx.doi.org/10.1007/BF00224274
Xu Y, Crouch JH, 2008. Marker-assisted selection in plant
breeding: From publications to practice. Crop Sci-
ence 48, 391-407. http://dx.doi.org/10.2135/cropsci2007
.04.0191.
Yin X, Kropff MJ, Stam P, 1999. The role of ecophys-
iological models in QTL analysis: The example of
Breeding
1,
355-363.
http://dx.doi.org/
10.1007/BF01248413
Simmonds NW, 1979. The impact of plant breeding on sug-
arcane yields in Barbados. Tropical Agriculture, Trinidad
56, 289-300.
 
 
 
 
 
 
 
Search WWH ::




Custom Search