Biology Reference
In-Depth Information
genetic analyses would be the availability of SNP
codominant markers along with the develop-
ment of statistical tools tailored to infer marker
dosage in highly polyploid sugarcane. Such
innovative technologies and models would help
overcome the poor informative conventional
(low-throughput) dominant marker systems
that prevent sugarcane breeders from applying
deep genetic analysis. Comparative genomics
among grasses, based on the dramatic increase
in sequencing and bioinformatics capabilities,
also presents a powerful opportunity to densely
scan regions harboring candidate genes. Finally,
research should be inspired by concepts devel-
oped for model plants and animal systems, such
as genomic selection and model-assisted eco-
physiological phenotyping. Genomic selection
approaches should improve estimation of the
effects of markers, including the swarm of small-
effect markers. Plant growth modeling could
provide sounder ecophysiological traits and
parameters to describe the complex biological
process underlying yield and sucrose elabora-
tion. Such models could circumvent traditional
problems caused by genotype by environment
interaction.
(QTL) for yellow spot ( Mycovellosiella koepkei ) disease
resistance in sugarcane. Molecular Breeding 19, 1-14.
http://dx.doi.org/10.1007/s11032-006-9008-3
Alwala S, Kimbeng C, 2010. Molecular genetic linkage map-
ping in Saccharum : Strategies, resources and achieve-
ments. In: Henry R, Chittaranjan K (eds), Genetics,
genomics, and breeding of sugarcane . Enfield NH: CRC
Press, Science Publishers, pp. 70-96.
Alwala S, Kimbeng C, Veremis J, Gravois K, 2009. Identifi-
cation of molecular markers associated with sugar-related
traits in a Saccharum interspecific cross. Euphytica 167,
127-142. http://dx.doi.org/10.1007/s10681-008-9869-0
Anonymous, 2012. REVIEW: 2011 International Sugar
Organisation Seminar, London, UK. International Sugar
Journal 114, 41-43.
Arceneaux G, 1967. Cultivated sugarcanes of the world and
their botanical derivation. Proceeding of the International
Society of Sugar Cane Technologists 12, 844-854.
Arruda P, 2011. Perspective of the sugarcane industry in
Brazil. Tropical Plant Biology 4, 3-8. http://dx.doi.org/
10.1007/s12042-011-9074-5
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver
AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA,
2008. Rapid SNP discovery and genetic mapping using
sequenced RAD markers. PLoS ONE 3(10): e3376.
http://dx.doi.org/10.1371/journal.pone.0003376
Bernardo R, Yu J, 2007. Prospects for genomewide selection
for quantitative traits in maize. Crop Science 47, 1082-
1090. http://dx.doi.org/10.2135/cropsci2006.11.0690
Botha F, 2009. Energy yield and cost in a sugarcane biomass
system. Proceeding of the Australian Society of Sugar
Cane Technologists 31, 1-10.
Brazilian Ministerio de Minas e Energia, 2011.
Balan¸o Energetico Nacional 2011, Resultados Prelim-
inares, ano base 2010, p. 49. https://ben.epe.gov.br/
downloads/Resultados_Pre_BEN_2011.pdf
Bremer G, 1922. Een cytologisch onderzoek van eenige
soorten en soortsbastaarden van het geslacht Saccha-
rum . Arch Suikerindust Nederl Indic Meded Proefsta
Java Suikerindust 1-t 12 , (English translation in Genetica
5:97-148; 273-326).
Breseghello F, Sorrells ME, 2006. Association map-
ping of kernel size and milling quality in wheat
( Triticum aestivum L.) cultivars. Genetics 172, 1165-
1177. http://dx.doi.org/10.1534/genetics.105.044586
Brumlop S, Finckh MR, 2011. Applications and potentials
of marker assisted selection (MAS) in plant breeding,
Final report of the F + E project “Applications and poten-
tials of smart breeding.” Federal Agency for Nature
Conservation, Bonn, Germany. www.bfn.de/fileadmin/
MDB/documents/service/Skript_298.pdf
Bundock P, Eliott F, Ablett G, Benson A, Casu R, Aitken
K, Henry R, 2009. Targeted single nucleotide poly-
morphism (SNP) discovery in a highly polyploid plant
species using 454 sequencing. Plant Biotechnology Jour-
nal 7, 347-354. http://dx.doi.org/10.1111/j.1467-7652.
2009.00401.x
References
Aitken K, Hermann S, Karno K, Bonnett G, McIntyre L,
Jackson P, 2008. Genetic control of yield related stalk
traits in sugarcane. Theoretical and Applied Genetics
117, 1191-1203. http://dx.doi.org/10.1007/s00122-008-
0856-6.
Aitken K, Jackson P, McIntyre C, 2005. A combination of
AFLP and SSR markers provides extensive map cover-
age and identification of homo (eo)logous linkage groups
in a sugarcane cultivar. Theoretical and Applied Genet-
ics 110, 789-801. http://dx.doi.org/10.1007/s00122-004-
1813-7
Aitken K, Jackson P, McIntyre C, 2006. Quantitative trait
loci identified for sugar related traits in a sugarcane ( Sac-
charum spp.) cultivar
× Saccharum officinarum popula-
tion. Theoretical and Applied Genetics 112, 1306-1317.
http://dx.doi.org/10.1007/s00122-006-0233-2
Alexander AG, 1985. The energy cane alternative . Amster-
dam: Elsevier Science Publishers BV, 509pp.
Aljanabi S, Parmessur Y, Kross H, Dhayan S, Saum-
tally S, Ramdoyal K, Autrey L, Dookun-Saumtally A,
2007. Identification of a major quantitative trait locus
 
 
Search WWH ::




Custom Search