Biology Reference
In-Depth Information
compose the final fruit quality attributes that
are prioritized by the customers of seed com-
panies. Association of individual metabolite lev-
els or metabolite profiles with critical fruit qual-
ity metrics, such as soluble solids and viscosity,
concurrent with field testing in relevant genetic
backgrounds, will hasten the incorporation of
genomics-assisted findings into tomato breeding
practices.
Dahmani-Mardas, F., Troadec, C., Boualem, A., Leveque,
S., Alsadon, A.A., Aldoss, A.A., Dogimont, C., and
Bendahmane, A. 2010. Engineering melon plants with
improved shelf life using the TILLING approach. PLoS
ONE 5:e15776.
Davuluri, G.R., van Tuinen, A., Fraser, P.D., Manfredonia,
A., Newman, R., Burgess, D., Brummell, D.A., King,
S.R., Palys, J., Uhlig, J., et al. 2005. Fruit-specific RNAi-
mediated suppression of DET1 enhances carotenoid and
flavonoid content in tomatoes. Nat Biotech 23:890-895.
Demmig-Adams, B., and Adams, W.W. 2002. Antioxi-
dants in Photosynthesis and Human Nutrition. Science
298:2149-2153.
Eshed, Y., and Zamir, D. 1995. An introgression line
population of Lycopersicon pennellii in the cultivated
tomato enables the identification and fine mapping of
yield-associated QTL. Genetics 141:1147-1162.
FAOSTAT. 2012. Food and Agriculture Organization of the
United Nations. http://faostat.fao.org.
Faria, M.V., Maluf, W.R., Azevedo, S.M.d., Andrade Junior,
V.C.d., Gomes, L.A.A., Moretto, P., and Licursi, V.
2003. Yield and post-harvest quality of tomato hybrids
heterozygous at the locialcoba¸a, old gold-crimson or
high pigment. Genetics and Molecular Research 2:
317-327.
Fei, Z., Joung, J.-G., Tang, X., Zheng, Y., Huang, M., Lee,
J.M., McQuinn, R., Tieman, D.M., Alba, R., Klee, H.J.,
et al. 2011. Tomato Functional Genomics Database: A
comprehensive resource and analysis package for tomato
functional genomics. Nucleic acids research 39:D1156-
D1163.
Foolad, M.R. 2007a. Genome mapping and molecular breed-
ing of tomato. Int'l J Plant Genomics Vol. 2007, Article
ID 64358, 52 pages. doi:10.1155/2007/64358:1-52.
Foolad, M.R. 2007b. Molecular mapping, marker-assisted
selection and map-based cloning in tomato. In: R.K.
Varshney and R. Tuberosa (eds.) Genome Assisted Crop
Improvement. Vol. 2, Genome Applications in Crops .Dor-
drecht, The Netherlands: Springer, pp. 307-356.
Frary, A., Nesbitt, T.C., Frary, A., Grandillo, S., van
der Knaap, E., Cong, B., Liu, J.-P., Meller, J., Elber,
R., Alpert, K.B., et al. 2000. fw2.2 : A quantitative trait
locus key to the evolution of tomato fruit size. Science
289:85-88.
Fraser, P.D., and Bramley, P.M. 2004. The biosynthesis
and nutritional uses of carotenoids. Progress in Lipid
Research 43:228-265.
Fraser, P.D., Enfissi, E., and Bramley, P.M. 2008. Genetic
engineering of carotenoid formation in tomato fruit
and the potential application of systems and synthetic
biology approaches. Arch Biochem and Biophys 483:
196-204.
Fraser, P.D., Enfissi, E.M., Goodfellow, M., Eguchi,
T., and Bramley, P.M. 2007a. Metabolite profiling of
plant carotenoids using the matrixassisted laser desorp-
tion ionization time-of-flight mass spectrometry. Plant J.
49:552-564.
References
Ashrafi, H., Kinkade, M.P., and Foolad, M.R. 2009. A
new genetic linkage map of tomato based on a Solanum
lycopersicum × S. pimpinellifolium RIL population dis-
playing locations of candidate resistance ESTs. Genome
52:935-956.
Ashrafi, H., Kinkade, M., Merk, H., and Foolad, M.R.
2012. Identification of novel QTLs for lycopene con-
tent and other fruit quality characteristics in a Solanum
lycopersicum x S. pimpinellifolium RIL population. Mol
Breeding published online; DOI 10.1007/s11032-011-
9643-1.
Barone, A., Di Matteo, A., Carputo, D., and Frusciante,
L. 2009. High-throughput genomics enhances tomato
breeding efficiency. Current Genomics 10:1-9.
Bermudez, L., Urias, U., Milstein, D., Kamenetzky, L.,
Asis, R., Fernie, A.R., Van Sluys, M.A., Carrari, F., and
Rossi, M. 2008. A candidate gene survey of quantitative
trait loci affecting chemical composition in tomato fruit.
Journal of Experimental Botany 59:2875-2890.
Bovy, A., Schijlen, E., and Hall, R. 2007. Metabolic
engineering of flavonoids in tomato ( Solanum lycoper-
sicum ): The potential for metabolomics. Metabolomics 3:
399-412.
Bramley, P.M. 2002. Regulation of carotenoid formation
during tomato fruit ripening and development. Journal
of Experimental Botany 53:2107-2113.
Cantarel, B.L., Korf, I., Robb, S.M.C., Parra, G., Ross,
E., Moore, B., Holt, C., Sanchez Alvarado, A., and
Yandell, M. 2007. MAKER: An easy-to-use annota-
tion pipeline designed for emerging model organism
genomes. Genome Research 18:188-196.
Causse, M., Duffe, P., Gomez, M.C., Buret, M., Damidaux,
R., Zamir, D., Gur, A., Chevalier, C., Lemaire-Chamley,
M., and Rothan, C. 2004. A genetic map of candi-
date genes and QTLs involved in tomato fruit size and
composition. Journal of Experimental Botany 55:1671-
1685.
Chaıb, J., Lecomte, L., Buret, M., and Causse, M. 2006. Sta-
bility over genetic backgrounds, generations, and years of
quantitative trait locus (QTLs) for organoleptic quality in
tomato. Theoretical and Applied Genetics 112:934-944.
Search WWH ::




Custom Search