Environmental Engineering Reference
In-Depth Information
algebra then you might skip to the end result, Eq. (7.19), otherwise we write
1
γ(v A )
=
1
v A /c 2
= 1
v Ay /c 2 1 / 2
v Ax /c 2
1
1 / 2
v Ay /c 2
U) 2 /c 2
(v Ax
1
γ(U) 2
=
Uv Ax /c 2 ) 2
( 1
( 1
Uv Ax /c 2 ) 2
Uv Ax /c 2
1
=
1
U 2 v A /c 4
v A /c 2
+
U 2 /c 2
Uv Ax /c 2
1
=
1
v A /c 2
U 2 ( 1
v A /c 2 )/c 2
Uv Ax /c 2
1
=
( 1
v A /c 2 )( 1
U 2 /c 2 )
Uv Ax /c 2 ).
=
γ(v A )γ (U)( 1
(7.19)
Eq. (7.18) then becomes
p Ay
γ(v A )m A v Ay
=
=
m A γ(v A )v Ay
=
p Ay .
(7.20)
This is an interesting result. It tells us that the y -component of momentum does
not change as we move from S to S and because of this property it is evident that
if the y component of momentum is conserved in S then it must also be conserved
in S . Now we turn our attention to the x component of the momentum. Again we
focus (rather arbitrarily) on particle A:
p Ax =
γ(v A )m A v Ax
v Ax
U
γ(v A )m A ·
=
Uv Ax /c 2 .
(7.21)
1
Now we can once again use Eq. (7.19) to write
p Ax =
m A γ(U)γ(v A )(v Ax
U)
=
γ (U)(p Ax
γ(v A )m A U).
(7.22)
Substituting this (and the corresponding expressions for the other particles) into
the x component part of Eq. (7.17) gives
γ (U)(p Ax
+
p Bx
p Cx
p Dx )
γ(U)U [ γ(v A )m A +
γ(v B )m B
γ(v C )m C
γ(v D )m D ]
=
0 .
(7.23)
Search WWH ::




Custom Search