Digital Signal Processing Reference
In-Depth Information
N 1
0 ðW N e j U Þ n ¼
1 e U 2 p k=NÞN
1 e U 2 p k=NÞ
(E.6)
Using the Euler formula, Equation (E.6) becomes
N 1
0 ðW N e j U Þ n ¼ e jNð U 2 p k=NÞ= 2
ðe jNð U 2 p k=NÞ= 2
e jNð U 2 p k=NÞ= 2
Þ= 2 j
e U 2 p k=NÞ= 2
ðe U 2 p k=NÞ= 2
e U 2 p k=NÞ= 2
Þ= 2 j
¼ e jNð U 2 p k=NÞ= 2 sin ½Nð U 2 p k=NÞ= 2
e U 2 p k=NÞ= 2 sin ½ð U 2 p k=NÞ= 2
(E.7)
Substituting Equation (E.7) into Equation (E.5) leads to
N e jðN 1 Þ U = 2 N 1
k ¼ 0 HðkÞe jðN 1 Þk p =N sin ½Nð U 2 p k=NÞ= 2
1
Hðe j U Þ¼
(E.8)
sin ½ð U 2 p k=NÞ= 2 Þ
2 p m
N
Let U ¼ U m ¼
, and substitute it into Equation (E.8) to get
N e jðN 1 Þ 2 p m=ð 2 N 1
1
k ¼ 0 HðkÞe jðN 1 Þk p =N sin ½Nð 2 p m=N 2 p k=NÞ= 2
Hðe j U m Þ¼
(E.9)
sin ½ð 2 p m=N 2 p k=NÞ= 2 Þ
Clearly, when m s k , the last term of the summation in Equation (E.9) becomes
sin ½Nð 2 p m=N 2 p k=NÞ= 2
sin ½ð 2 p m=N 2 p k=NÞ= 2 Þ ¼
sin ð p ðm kÞÞ
sin ð p ðm kÞ=NÞ ¼
0
sin ð p ðm kÞ=NÞ ¼ 0
When m ¼ k , using L'Hospital's rule we have
sin ½Nð 2 p m=N 2 p k=NÞ= 2
sin ½ð 2 p m=N 2 p k=NÞ= 2 Þ ¼
sin ðN p ðm kÞ=NÞ
sin ð p ðm kÞ=NÞ
sin ðNxÞ
sin ðxÞ
¼ lim
x / 0
¼ N
Then Equation (E.9) is simplified to
1
Hðe j U k Þ¼
N e jðN 1 Þ p k=N HðkÞe jðN 1 Þk p =N N ¼ HðkÞ
that is,
Hðe j U k Þ¼HðkÞ; 0 k N 1
(E.10)
2 p k
N
where U k ¼
, corresponding to the k th DFT frequency component. The fact is that if we specify
the desired frequency response, U k Þ ,0 k N 1, at the equally spaced sampling frequency
determined by U k ¼
2 p k
N
, they are actually the DFT coefficients; that is, HðkÞ ,0 k N 1, via
Equation (E.10) . Furthermore, the inverse of the DFT calculated using (E.10) will give the desired
impulse response, hðnÞ ,0 n N 1.
 
Search WWH ::




Custom Search