Digital Signal Processing Reference
In-Depth Information
We can determine the system output using a combined input, which is the weighed sum of the
individual inputs with constants 2 and 4, respectively. Using algebra, we see that
2
2
yðnÞ¼x
ðnÞ¼ð 4 x 1 ðnÞþ 2 x 2 ðnÞÞ
2
2
2
(3.9)
¼ð 4 uðnÞþ 2 dðnÞÞ
¼ 16 u
ðnÞþ 16 uðnÞdðnÞþ 4 d
ðnÞ
¼ 16 uðnÞþ 20 dðnÞ
Note that we use the fact that uðnÞdðnÞ¼dðnÞ , which can be easily verified.
Again, we express the weighted sum of the two individual outputs with the same constants 2
and 4 as
4 y 1 ðnÞþ 2 y 2 ðnÞ¼ 4 uðnÞþ 2 dðnÞ
(3.10)
It is obvious that
yðnÞ s 4 y 1 ðnÞþ 2 y 2 ðnÞ
(3.11)
Hence, the system is a nonlinear system, since the linear property, superposition, does not hold, as
shown in Equation (3.11) .
3.2.2 Time Invariance
A time-invariant system is illustrated in Figure 3.12 , where y 1 ðnÞ is the system output for the input
x 1 ðnÞ . Let
x 2 ðnÞ¼x 1 ðn n 0 Þ be the shifted version of
x 1 ðnÞ by n 0 samples. The output
y 2 ðnÞ
obtained with the shifted input x 2 ðnÞ¼x 1 ðn n 0 Þ
is equivalent to the output y 2 ðnÞ acquired by
shifting y 1 ðnÞ by n 0 samples, y 2 ðnÞ¼y 1 ðn n 0 Þ .
This can simply be viewed as the following:
If the system is time invariant and y 1 ðnÞ is the system output due to the input x 1 ðnÞ, then the shifted system input
x 1 ðn n 0 Þ will produce a shifted system output y 1 ðn n 0 Þ by the same amount of time n 0 .
yn
1 ()
x(n )
1
n
n
System
xn
xn n
yn
yn n
() (
)
() (
)
2
1
0
2
1
0
n
n
shifted by n samples
0
n
shifted by n samples
0
n
FIGURE 3.12
Illustration of the linear time-invariant digital system.
 
Search WWH ::




Custom Search