Digital Signal Processing Reference
In-Depth Information
We will verify this expression later. Applying the wavelet analysis equations, we have
c 1 ðkÞ¼ N
N
c 2 ðmÞh 0 ðm 2kÞ
d 1 ðkÞ¼ N
N
c 2 ðmÞh 1 ðm 2kÞ
Specifically,
p
2
c 1 ð0Þ¼ N
N
c 2 ðmÞh 0 ðmÞ¼c 2 ð0Þh 0 ð0Þþc 2 ð1Þh 0 ð1Þ¼2 1
p þ 1 1
p ¼ 3
2
c 1 ð1Þ¼ N
N
1
2
1
p þ 0 1
p ¼ 1
c 2 ðmÞh 0 ðm 2Þ¼c 2 ð2Þh 0 ð0Þþc 2 ð3Þh 0 ð1Þ¼
p
2
d 1 ð0Þ¼ N
N
c 2 ðmÞh 1 ðmÞ¼c 2 ð0Þh 1 ð0Þþc 2 ð1Þh 1 ð1Þ¼2 1
1
1 2
p þ 1
p
¼
p
1
2
1
N
1
¼ 1
2
p þ 0
p
p
d 1 ð1Þ¼
c 2 ðmÞh 1 ðm 2Þ¼c 2 ð2Þh 1 ð0Þþc 2 ð3Þh 1 ð1Þ¼
N
Using the subband coding method in Figure 13.36 yields
>> x0¼rconv([1 1]/sqrt(2),[2 1 0.5 0])
x0 ¼ 2.1213 0.3536 0.3536 1.4142
>> c1¼x0(1:2:4)
c1 ¼ 2.1213 0.3536
>> x1¼rconv([1 1]/sqrt(2),[2 1 0.5 0])
x1 ¼ 0.7071 1.0607 0.3536 1.4142
>> d1¼x1(1:2:4)
d1 ¼ 0.7071 0.3536
where the MATLAB function rconv() for filter operations with the reversed filter coefficients is listed in Section
13.8 . Repeating for the next level, we have
c 0 ðkÞ¼ N
N
c 1 ðmÞh 0 ðm 2kÞ
d 0 ðkÞ¼ N
N
c 1 ðmÞh 1 ðm 2kÞ
Thus
p
2
c 0 ð0Þ¼ N
N
c 1 ðmÞh 0 ðmÞ¼c 1 ð0Þh 0 ð0Þþc 1 ð1Þh 0 ð1Þ¼ 3
1
p þð 1
p Þ 1
p ¼ 5
4
2
p
2
1
d 0 ð0Þ¼ N
N
c 1 ðmÞh 1 ðmÞ¼c 1 ð0Þh 1 ð0Þþc 1 ð1Þh 1 ð1Þ¼ 3
1
1
2
¼ 7
4
p þ
p
2
p
Search WWH ::




Custom Search