Digital Signal Processing Reference
In-Depth Information
1
x ()
vn
k ()
yn
k ()
z
1
W N k
vn
k (
1
2
k
N
2
cos
1
z
1 vn
k (
2
)
FIGURE 8.53
Second-order Goertzel IIR filter.
v k ðnÞ¼ 2 cos 2 pk
N
v k ðn 1 Þv k ðn 2 ÞþxðnÞ
(8.71)
y k
¼ v k
W N v k
n 1
n
n
(8.72)
with initial conditions v k ð 2 Þ¼ 0, v k ð 1 Þ¼ 0
Then the DFT coefficient XðkÞ is given as
XðkÞ¼y k ðNÞ
(8.73)
The squared magnitude x(k) is computed as
k ðN 1 Þ 2 cos 2 pk
2
2
2
jXðkÞj
¼ v
k ðNÞþv
v k ðNÞv k ðN 1 Þ
(8.74)
N
We show the derivation of Equation (8.74) as follows. Note that Equation (8.72) involves complex
algebra, since the equation contains only one complex number, a factor
¼ cos 2 pk
N
j sin 2 pk
N
2 pk
N
W N ¼ e j
discussed in Chapter 4. If our objective is to compute the spectrum value, we can substitute n ¼ N into
Equation (8.72) to obtain XðkÞ and multiply XðkÞ by its conjugate X ðkÞ
to achieve the squared
magnitude the DFT coefficient. It follows (Ifeachor and Jervis, 2002) that
2
¼ XðkÞX ðkÞ
jXðkÞj
Since
X k ¼ y k N W N v k N 1
X
¼ y k
W N v k
N 1
k
N
 
Search WWH ::




Custom Search