Digital Signal Processing Reference
In-Depth Information
10z
z 2 z þ 1
c. X ðzÞ¼
z 4
z 1 þ z 6
z 3
z þ 0:5
d. X ðzÞ¼
þ
Solution:
xðnÞ¼2Z 1 ð1Þþ4Z 1 z
z 1
Z 1 z
z 0:5
a.
From Table 5.1 , we have
x n ¼ 2d n þ 4u n ð0:5Þ
n u n
xðnÞ¼Z 1
!
Z 1
!
¼ 5Z 1 z
ðz 1Þ
!
Z 1
!
5z
ðz 1Þ
2z
ðz 0:5Þ
2
0:5
0:5z
ðz 0:5Þ
b.
2
2
2
2
Then
xðnÞ¼5nu n 4nð0:5Þ
n u n
10
sinðaÞ
10z
z 2 z þ 1 ¼
sinðaÞz
z 2 2zcosðaÞþ1
c.
X ðzÞ¼
By coefficient matching, we have
2cosðaÞ¼1
Hence, cosðaÞ¼0:5, and a ¼ 60 0 . Substituting a ¼ 60 0 into the sine function leads to
sin a
¼ sin 60 0
¼ 0:866
Finally, we have
xðnÞ¼ 10
sinðaÞ
Z 1
sinðaÞz
z 2 2zcos a þ 1
10
0:866 sinðn,60 0 Þ¼11:547sinðn,60 0 Þ
¼
xðnÞ¼Z 1 z 5
þ Z 1 z 6 ,1
þ Z 1 z 4
d.
z
z 1
z
z þ 0:5
Using Table 5.1 and the shift property, we get
n4 uðn 4Þ
xðnÞ¼uðn 5Þþdðn 6Þþð0:5Þ
Now, we are ready to deal with the inverse z-transform using the partial fraction expansion and
lookup table. The general procedure is as follows:
1. Eliminate the negative powers of z for the z-transform function XðzÞ .
2. Determine the rational function XðzÞ=z (assuming it is proper), and apply the partial fraction
expansion to the determined rational function XðzÞ=z using the formula in Table 5.3 .
3. Multiply the expanded function XðzÞ=z by z on both sides of the equation to obtain XðzÞ .
4. Apply the inverse z-transform using Table 5.1 .
Search WWH ::




Custom Search