Digital Signal Processing Reference
In-Depth Information
n
c. xðnÞ¼ð0:5Þ
uðnÞ
n
d. xðnÞ¼ð0:5Þ
sinð0:25pnÞuðnÞ
e. xðnÞ¼e 0:1n
cosð0:25pnÞuðnÞ
Solution:
a. From Line 3 in Table 5.1 , we get
10z
z 1
X ðzÞ¼Zð10uðnÞÞ ¼
b. Line 9 in Table 5.1 leads to
X ðzÞ ¼ 10Zðsinð0:2pnÞuðnÞÞ
10sinð0:25pÞz
z 2 2zcos 0:25p þ 1 ¼
7:07z
z 2 1:414z þ 1
¼
c. From Line 6 in Table 5.1 , we obtain
X ðzÞ¼Z ð0:5Þ
n u n ¼
z
z 0:5
d. From Line 11 in Table 5.1 , it follows that
X ðzÞ¼Z ð0:5Þ
sin 0:25pn u n ¼
0:5 sinð0:25pÞz
z 2 2 0:5 cos 0:25p z þ 0:5 2
n
0:3536z
z 2 1:4142z þ 0:25
¼
e. From Line 14 in Table 5.1 , it follows that
z z e 0:1 cos 0:25p
z 2 2e 0:1 cos 0:25p z þ e 0:2
X ðzÞ¼Z e 0:1n
cos 0:25pn uðnÞ ¼
zðz 0:6397Þ
z 2 1:2794z þ 0:8187
¼
5.2 PROPERTIES OF THE Z-TRANSFORM
In this section, we study some important properties of the z-transform. These properties are widely
used in deriving the z-transfer functions of difference equations and solving the system output
responses of linear digital systems with constant system coefficients, which will be discussed in the
next chapter.
Linearity: The z-transform is a linear transformation, which implies
Zðax 1 ðnÞþbx 2 ðnÞÞ ¼ aZðx 1 ðnÞÞ þ bZðx 2 ðnÞÞ
(5.2)
where x 1 ðnÞ and x 2 ðnÞ denote the sampled sequences, while a and b are the arbitrary constants.
Search WWH ::




Custom Search