Digital Signal Processing Reference
In-Depth Information
for n ¼ 1
X ð0Þe j0 þ X ð1Þe j 2 þ X ð2Þe jp þ X ð3Þe j 3 2
X 3
xð1Þ¼ 1
4
X ðkÞe j k 2 ¼ 1
4
k ¼0
¼ 1
4 ðX ð0ÞþjX ð1ÞX ð2ÞjX ð3ÞÞ
¼ 1
4 ð10 þ jð2 þ j2Þð2Þjð2 j2ÞÞ ¼ 2
for n ¼ 2
X ð0Þe j0 þ X ð1Þe jp þ X ð2Þe j2p þ X ð3Þe j3p
X 3
xð2Þ¼ 1
4
X ðkÞe jkp ¼ 1
4
k ¼0
¼ 1
4 ðX ð0ÞX ð1ÞþX ð2ÞX ð3ÞÞ
¼ 1
4 ð10 ð2 þ j2Þþð2Þð2 j2ÞÞ ¼ 3
and for n ¼ 3
X ð0Þe j0 þ X ð1Þe j 3 2 þ X ð2Þe j3p þ X ð3Þe j 9 2
X 3
xð3Þ¼ 1
4
¼ 1
4
X ðkÞe j kp 2
k ¼0
¼ 1
4 ðX ð0ÞjX ð1ÞX ð2ÞþjX ð3ÞÞ
¼ 1
4 ð10 jð2 þ j2Þð2Þþjð2 j2ÞÞ ¼ 4
This example actually verifies the inverse DFT. Applying the MATLAB function ifft() we obtain
>> x ¼ ifft([10 2þ2j 2 2 2j])
x ¼ 1234
Now we explore the relationship between the frequency bin k and its associated frequency.
Omitting the proof, the calculated N DFT coefficients XðkÞ represent the frequency components
ranging from 0 Hz (or radians/second) to f s Hz (or u s radians/second), hence we can map the frequency
bin k to its corresponding frequency as follows:
u ¼ ku s
N
ð radians per second Þ
(4.12)
or in terms of Hz,
f ¼ kf s
N
ð Hz Þ
(4.13)
where u s ¼ 2 pf s .
Search WWH ::




Custom Search