Biomedical Engineering Reference
In-Depth Information
a 2 ¼ K s X YF X = S S 0 ðm max Dk d Þðm max k d ÞþK s X YF X = S K S ½ðDþ2k d Þðm max k d ÞDk d
þm max ½ðm max k d Þð1þK s X C s ÞD
(18.78b)
S
a 1 ¼ K s X YF X = S S 0 K S ½ðDþ2k d Þðm max k d ÞDk d þK s X YF X = S K
k d ðDþ k d Þ
þK S k d m max ð1þK s X C s ÞþDm max K S
(18.78c)
2
S
a 0 ¼ K s X YF X = S K
k d S 0 ðDþk d Þ
(18.78d)
Let
S ¼ yþ a 2
3a 3
(18.79)
Eqn (18.77) is reduced to
3
y
þ3a 5 y2a 4 ¼ 0
(18.80)
where
2
2
9a
a 5 ¼ a 1
3a 3 a
(18.81a)
2
3
3
2
27a
a 4 ¼ a 0
2a 3 a 1 a 2
3 þ a
(18.81b)
3
3
6a
The solution to Eqn (18.79) can be obtained by letting
y ¼ xþ a
x ¼ x a 5
(18.82)
x
The substitution by Eqn (18.82) can reduce Eqn (18.80) into a quadratic equation, which
can be solved easily to give two roots
3
x
¼ a 4 a 6
(18.83)
where
q
a
2
3
5
a 6 ¼
4 þ a
(18.84)
These two roots give identical values to y in Eqn (18.82) . Therefore, one of the roots can be
used. The next step is to take the cubic roots from Eqn (18.83) , which yields three roots:
one real and one pair of conjugate complex roots (if a 4 þ
a 6 is real). Substituting back to S,
we obtain the solutions to Eqn (18.77) :
3a 3 þ
3 p
S 1 ¼ y 1 þ a 2
3a 3 ¼ x 1 a 5
x 1 þ a 2
3a 3 ¼ a 2
þ
p
a 4 þ a 6
a 4 a 6
(18.85a)
3
p
p
3
p
a 4 þ a 6
p
a 4 a 6
S 2 ¼ y 2 þ a 2
3a 3 ¼ x 2 a 5
x 2 þ a 2
3a 3 ¼ a 2
3a 3 þ 1 þ
i
þ 1
i
(18.85b)
3
3
2
2
Search WWH ::




Custom Search