Biomedical Engineering Reference
In-Depth Information
TABLE 11.2 Experimentally Determined Values of YF ATP/X and m ATP , for Various Microorganisms Grown
under Anaerobic Conditions with Glucose as the Energy Source
YF ATP/X , mmoles-
ATP/g-cells
m ATP , mmoles-
ATP/(g-cells$h)
Microorganism
Sources
Aerobacter aerogenes
71.4
56.8
6.8
2.3
A.H. Stouthamer, C. Bettenhaussen. 1973
Biochim. Biophysics Acta, 301 :53 e 70.
Bacillus clausii PP 473-8
42.0
2.93
T. Christiansen, J. Nielsen. 2002 Bioprocess
and Biosystems Eng. 24 (5): 329 e 339.
Candida parapsilosis
80
0.2
B. Atkinson, F. Mavituna. 1983 Biochemical
Engineering and Biotechnology Handbook,
MacMillan, Inc.: New York.
Escherichia coli
97
118
18.9
6.9
W.P. Hempfling, S.E. Mainzer. 1975
J. Bacteriol. 123 : 1076 e 1087.
Lactobacillus casei
41.2
1.5
W. de Vries, et al. 1970 J. Gen. Microbiol. 63 :
333 e 345.
Lactobacillus delbruckii
72
0
N.C. Major, A.T. Bull. 1985. Biotechol.
Letters, 7 : 401 e 405.
Lactococcus cremoris
73
1.4
R. Otto, et al. Prod. Nat. Acad. Sci. 77 :
5502 e 5506.
53
e
W.W. Brown, E.B. Colins. 1977 Appl.
Environ. Microbiol. 59 : 3206 e 3211.
15 e 50
7 e 18
S. Benthin, et al. 1994. Chem. Eng. Sci. 49:
589 e 609.
Lactococcus diacetilactis
47
e
W.W. Brown, E.B. Colins. 1977 Appl.
Environ. Microbiol. 59 : 3206 e 3211.
Penicillium chrysogenum
61
1.2
W.M. van Gulik, et al. 2001 Biotechnol.
Bioeng., 72 : 185 e 193.
Saccharomyces cerevisiae
71 e 91
<
1
C. Verduyn, et al. 1990. J. Gen. Microbiol.
136 : 405 e 411.
S. cerevisiae
91
77
0.5
0.25
Atkinson and Mavituna (1983)
S. cerevisiae (petite)
88.5
0.7
Atkinson and Mavituna (1983)
which is a more general expression than the various ways of approximating the cell mainte-
nance and death. Since cell maintenance goes head to tail with cell growth, substituting
Eqn (11.32) into (11.33) , we obtain
m emax K YG m G
K Ye m max þðK YG K Ye Þm G
m e ¼
(11.35)
Equation (11.35) can be rewritten as
m e m max m G
K em þ m G
m e ¼
(11.36)
Search WWH ::




Custom Search