Biomedical Engineering Reference
In-Depth Information
!
M
2p
3=2
v x þ
v y þ
v z
P
ð
v x ;
v y ;
v z Þ¼
exp
M
(6.12)
RT
2
RT
where P(v x , v y , v z )dv x dv y dv z is the fraction of all molecules having velocities in the range of
(v x , v y , v z )to(v x þ
dv z ) in the Cartesian (rectangular) coordinate axes of x, y,
and z. For an isotropic medium, i.e. the mixture (locally) is uniform, there is directional pref-
erence for any changes. Let us do a change of variables by setting
dv x , v y þ
dv y , v z þ
q
v x þ
v y þ
v z
v
¼
v x ¼
v
cos q sin f
(6.13)
v y ¼
v
sin q sin f
v z ¼
v
cos f
which corresponding to a transformation from Cartesian space of (v x , v y , v z ) to spherical
space of (v, q , f ). As such, 0
f p ,0
q
2 p . This change of variables applies to Eqn
(6.12) , we have
v 2 sin f
ð2pRT
Þ 3=2 e Mv 2 =ð2RTÞ d v d f d q
P
ð
v
; q; fÞ
d v d f d q ¼
(6.14)
=
M
where P(v, f , q )dvd f d q is the fraction of all molecules having velocities in the range v to
v
þ
dv, with the directions setting between ( f , q )to( f þ
d f , q þ
d q ). Integrating the whole
range of 0
f p and 0
q
2 p , we obtain
v 2
4
e Mv 2 =ð2RTÞ d v
P
ð
v
Þ
d v
¼
(6.15)
Þ 3=2 p 1=2
ð2
RT
=
M
where P(v)dv is the fraction of all molecules having velocities in the range v to v
þ
dv. This is
the Maxwell
Boltzmann distribution, we
obtain other quantities of interest, such as the average velocity and the root-mean-square
velocity. These are listed in Table 6.1 .
e
Boltzmann distribution. From this Maxwell
e
TABLE 6.1 Properties Derived from the Maxwell
e
Boltzmann Distribution Law
Property
Description
Relation
Value
¼ R 0
r
2
v
Average velocity
v
vP
ð
v
Þ
d v
RT
pM
2
r
2
Z v m
1
2 ¼
RT
M
v m
Median velocity
P
ð
v
Þ
d v
1:0877
0
3
RT
M
v 2
Second momentum of
distribution
v 2 ¼ R 0
r
3
v 2 P
ð
v
Þ
d v
p
v 2
RT
M
Root-mean-square
velocity
Search WWH ::




Custom Search