Biomedical Engineering Reference
In-Depth Information
Since the final pressures are not functions of temperature for the required conversion of A.
Since based on the rate law,
d k f
E f
RT 2
d k b
d T ¼ k b E b
d T ¼ k f
(E5-9.2)
RT 2
We obtain by substituting Eqn (E5-9.2) into Eqn (E5-9.1) ,
RT 2 p B p C k b E b
E f
0 ¼ p A k f
(E5-9.3)
RT 2
Therefore,
k f
p B p C
p A
E b
E f
k b ¼
(E5-9.4)
For a given conversion f A , the flow rates of the reaction mixture are given by
F A ¼ F A 0 1 f A ; F B ¼ F A 0 f A ¼ F C ;
and F T ¼ F A þ F B þ F C ¼ F A0 1 þ f A :
Therefore, the partial pressures in the final reaction mixture are given by
F A
F T P ¼
1 f A
1 þ f A P
p A ¼
(E5-9.5a)
F B
F T P ¼
f A
1 þ f A P ¼ p C
p B ¼
(E5-9.5b)
Substitute Eqn (E5-9.5) into Eqn (E5-9.4) , we obtain
f A
0:22 2
ð1 þ 0:22Þð1 0:22Þ
k f
k b ¼
E b
E f P ¼
60
20 50 bar
1 þ f A 1 f A
¼ 7:63 bar
Also
0:435 exp
E f
R T
exp E b E f
R T
bar
k f
k b ¼
0 : 435
147
147 exp
bar
¼
E b
R T
Therefore,
E b E f
60000 20000
8:314 ln 147
0:435 7:63
T ¼
R ln k f
bar 1 ¼
K
¼ 614:8 K
147
0:435
k b
Now we have obtained the optimum temperature (for maximum reaction rate). Substitute
the temperature and partial pressures into the rate expression, we obtain the maximum reac-
tion rate
= m 3
: s
r ¼ 0:183 mol
Search WWH ::




Custom Search