Biomedical Engineering Reference
In-Depth Information
Since the flow rate of product B is fixed, not a function of the conversion f A , we have
ln 1 f A
k
$ A F B
V F B
F B
C A0 f A
dGP$
d
$
kC A0 f A 1 f A þ
0 ¼
¼ 0 þ
f A
$
t L
(E4-5.10)
V
f A
which can be reduced to,
$ A kC A0
$
f A
1 f A þ kt L lnð1 f A Þ
0 ¼
(E4-5.11)
V
Since
$ A kC A0
$
$
=
mol
Þ0:15=min 2ð
mol
=
l
Þ
þ kt L ¼
þ 0:15=min 10 h
0:03 $
L $ h
Þ
V
¼ 1290
Equation (E-5.11) is reduced to
f A
1 f A þ lnð1 f A Þ
1290 ¼
(E4-5.12)
This nonlinear equation can be solved to give
f A ¼ 0:9992297
Thus, the optimum conversion is f A ¼
0.9992297. The reactor size can be computed from
Eqn (E4-5.6)
ln 1 f A
k
F B
lnð1 0:9992297Þ
0:15 60
100
2 0:9992297
V ¼
t L
C A0 f A ¼
10
L
¼ 540:24 L
c. The cash flow based on the optimum conversion:
ln 1 f A
k
GP$
F A0 ¼
$ B F B
F A0
F B
F A0 f A
F B
F A0 C A0 f A
$ A
$
t L
V
ln 1 f A
k
$
V
C A0
¼
$ B f A
$ A
t L
lnð1 0:99922297Þ
0:15 60
0:03
2
¼ 5 0:9992297 2
10
$
=
mol
A
¼
$ 2:8342 =
mol
A
d. At breaking even point, the net profit (or in this case the gross profit) is zero. Therefore, at
the break-even point, operating cost and the value of product are equal.
The value of product is,
$ B F B ¼ 5 100 $
=
h
¼ 500 $
=
h
which is also the operating cost at break even.
Search WWH ::




Custom Search